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The lift force on a spherical bubble in a viscous
linear shear flow
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The three-dimensional flow around a spherical bubble moving steadily in a viscous
linear shear flow is studied numerically by solving the full Navier–Stokes equations.
The bubble surface is assumed to be clean so that the outer flow obeys a zero-shear-
stress condition and does not induce any rotation of the bubble. The main goal of the
present study is to provide a complete description of the lift force experienced by the
bubble and of the mechanisms responsible for this force over a wide range of Reynolds
number (0.1%Re% 500, Re being based on the bubble diameter) and shear rate (0%
Sr% 1, Sr being the ratio between the velocity difference across the bubble and the
relative velocity). For that purpose the structure of the flow field, the influence of the
Reynolds number on the streamwise vorticity field and the distribution of the
tangential velocities at the surface of the bubble are first studied in detail. It is shown
that the latter distribution which plays a central role in the production of the lift force
is dramatically dependent on viscous effects. The numerical results concerning the lift
coefficient reveal very different behaviours at low and high Reynolds numbers. These
two asymptotic regimes shed light on the respective roles played by the vorticity
produced at the bubble surface and by that contained in the undisturbed flow. At low
Reynolds number it is found that the lift coefficient depends strongly on both the
Reynolds number and the shear rate. In contrast, for moderate to high Reynolds
numbers these dependences are found to be very weak. The numerical values obtained
for the lift coefficient agree very well with available asymptotic results in the low- and
high-Reynolds-number limits. The range of validity of these asymptotic solutions is
specified by varying the characteristic parameters of the problem and examining the
corresponding evolution of the lift coefficient. The numerical results are also used for
obtaining empirical correlations useful for practical calculations at finite Reynolds
number. The transient behaviour of the lift force is then examined. It is found that,
starting from the undisturbed flow, the value of the lift force at short time differs from
its steady value, even when the Reynolds number is high, because the vorticity field
needs a finite time to reach its steady distribution. This finding is confirmed by an
analytical derivation of the initial value of the lift coefficient in an inviscid shear flow.
Finally, a specific investigation of the evolution of the lift and drag coefficients with the
shear rate at high Reynolds number is carried out. It is found that when the shear rate
becomes large, i.e. Sr¯O(1), a small but consistent decrease of the lift coefficient
occurs while a very significant increase of the drag coefficient, essentially produced by
the modifications of the pressure distribution, is observed. Some of the foregoing
results are used to show that the well-known equality between the added mass
coefficient and the lift coefficient holds only in the limit of weak shears and nearly
steady flows.
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1. Introduction

When a particle moves in a shear flow and more generally in a rotational flow, it
experiences a transverse force. This force which is usually called the lift force is of
major importance in many practical situations. It is for example essential for predicting
the lateral distribution of bubbles in pipe flows: bubbles tend to migrate towards the
wall in upward flows while they migrate towards the centre of the pipe when the flow
goes downwards. The existence of the lift force for small rigid particles was first
demonstrated experimentally by Segre! & Silberberg (1962a, b) who studied the lateral
migration of neutrally buoyant spheres in a Poiseuille flow. Because of its practical
applications, the analytical calculation of the lift force on spherical particles has been
a subject of constant interest for more than forty years. This calculation is very tedious
even in asymptotic situations because it requires the consideration of the three-
dimensional momentum equations without major simplifications. Actually two series
of analytical work have been carried out on this problem. The first one considers the
effect of an inviscid rotational flow on a sphere and was initiated by Lighthill (1956)
and Hall (1956). Lighthill (1956) showed how the velocity field around the sphere can
be estimated to a first approximation when the shear is weak. His method consists in
evaluating how the incident vorticity is distorted by the potential flow induced by the
presence of the sphere. His results were improved in several subsequent works,
especially the one of Cousins (1970), but this author only obtained partial conclusions.
Finally, Auton (1984, 1987) succeeded in performing the complete calculation of the
secondary velocity field induced by the vorticity and evaluated the resulting lift force.
His result was further extended to ellipsoids by Naciri (1992) who used a slightly
different technique in order to avoid the calculation of a singular integral. The second
series of work concerns low-Reynolds-number flows and is related to sedimentation
problems. Combining several analytical techniques, Saffman (1965) obtained the lift
force on a small rigid sphere in a linear shear flow in the limit of small Reynolds
number and large shear. His solution is based on a matched asymptotic expansion in
which the flow in the inner region is modified by the inertia effects induced by the shear
in the outer region. McLaughlin (1991) extended Saffman’s analysis by considering the
case where inertia effects related to the mean flow are of same order as those induced
by the shear. Recently, Legendre & Magnaudet (1997) reconsidered Saffman’s and
McLaughlin’s analyses for a spherical drop of arbitrary viscosity. Their analytical
solution is therefore valid for a spherical bubble with a vanishing viscosity. In that case
the lift force was found to be (2}3)# times that of a solid sphere, the coefficient 2}3
corresponding to the ratio of the magnitude of the vorticity at the surface of each kind
of particle.

Several other flow situations involving a lift force have also been considered
analytically for a sphere, namely the case of various high- or low-Reynolds-number
two-dimensional shearing motions or the effect of a plane wall. Nevertheless they will
not be discussed here because we shall devote specific papers to similar situations (see
Magnaudet 1997 and Magnaudet & Legendre 1998 for a summary of the existing
results concerning the case of shearing motions). In contrast another series of work
deserves some lines of comments in view of the discussion below. It concerns the
attempts made to evaluate the lift force on a sphere in an inviscid flow without
explicitly solving the disturbed rotational flow around the sphere. The first step in that
direction was probably carried out by Drew & Lahey (1979) who invoked the frame
indifference principle in order to derive a general expression for the force density acting
on a dilute suspension of spheres and concluded that the lift coefficient must equal the
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added mass coefficient. Nevertheless, the various forms of the frame indifference
principle and their validity were discussed in the context of forces acting upon particles
by Ryskin & Rallison (1980) and Auton (1984). These authors showed that the form
of that principle used by Drew & Lahey (1979) is generally incorrect, suggesting that
their conclusions are invalid. Starting from very different grounds, Auton (1987) wrote
a momentum balance on a large domain of fluid surrounding the sphere and concluded
that, in the limit of weak shear rates, the lift coefficient C

L
is equal to the entrained

mass coefficient C
VM

defined by Darwin (1953). Using a rotating frame of reference,
Drew & Lahey (1987, 1990) considered the case of a sphere moving in an unsteady
straining and rotating flow. In their initial (1987) paper they had concluded that the lift
coefficient C

L
was equal to the added mass coefficient C

M
. Unfortunately their

derivation involved a fundamental error and in their corrigendum (1990) they only
concluded that the foregoing result holds for short times. More recently Zhang &
Prosperetti (1994) derived a general expression of the force density acting on a
suspension of spheres moving in a potential flow and generalized the result to a rotating
frame. By requiring that this expression transforms in an objective way in a subsequent
change of reference frame, they showed that a term identical to Auton’s lift force
appears when the flow is observed in a rotating frame. This brief summary shows that,
even if the methodologies used by the previous groups of authors are different, their
results converge in suggesting that the identity C

L
¯C

M
holds in inviscid flow.

Moreover, it must be mentioned that this identity was also found to hold for ellipsoids
by Naciri (1992), using a direct determination of the lift coefficient or a global
momentum balance under assumptions similar to those of Auton (1987).

Compared to the amount of analytical work reviewed above, the number of
computational studies that have considered the case of a spherical particle embedded
in a shear flow is very small. Dandy & Dwyer (1990) obtained the first numerical
estimates of the lift force on a rigid sphere for Reynolds numbers (based on the particle
diameter and velocity at the centre of the sphere) ranging between 0.01 and 100.
Nevertheless, their results display some troubling features. For example the flows they
considered had a relatively low shear. Therefore, at the lowest Reynolds numbers that
they studied, McLaughlin’s approximations apply while Saffman’s approximations do
not. Despite this evidence their numerical predictions of the lift force were in good
agreement with Saffman’s solution but disagreed significantly with McLaughlin’s
result. Actually, as will be shown below, there are reasons to believe that the accuracy
of the results of Dandy & Dwyer was strongly affected by the small size of their
computational domain (25 sphere radii). Recently, Komori & Kurose (1996) and
Kurose & Komori (1997) considered the same problem up to Reynolds numbers of
several hundred. While the results of Dandy & Dwyer (1990) show that when the
Reynolds number increases the lift coefficient (defined in a convenient manner) tends
towards a constant positive value, those of Kurose & Komori display completely
different trends: the latter authors find that beyond a certain Reynolds number the lift
coefficient becomes negative and depends strongly on the shear rate. This brief
summary shows that the situation concerning the lift force on a solid sphere is not clear
at the present time, except in the low-Reynolds-number limit for which asymptotic
results are available. This stresses the fact that the computation of the lift force is not
a trivial matter because this force results from subtle distortions of the flow.

Concerning a clean spherical bubble, i.e. a sphere under a shear-free condition
instead of a no-slip one, no computational study seems to have been reported up to
now. One can of course argue that in most practical situations bubbles are neither clean
nor spherical. The presence of surfactants on the surface of small spherical bubbles is
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F 1. Sketch of the flow configuration.

known to produce interfacial shear stresses and therefore to increase the drag (see e.g.
Cuenot, Magnaudet & Spennato 1997). It also has certainly a dramatic influence on
the lift force because the amount of interfacial vorticity may be several orders of
magnitude larger than for a clean interface. Regarding the effects of deformation, the
computations performed by Ervin & Tryggvason (1994) and Takagi & Matsumoto
(1995) for a deforming bubble moving in a shear flow revealed that the sign of the lift
force can change when the bubble becomes significantly non-spherical. Thus, even for
pure liquids, the results obtained for a spherical bubble may have a limited range of
applicability. Despite these limitations, there is an intrinsic fundamental interest in the
study of the lift force on a clean spherical bubble for the following reasons. First of all,
the range of validity of the analytical solutions derived by Auton (1984, 1987) and by
Legendre & Magnaudet (1997) is unknown and it is highly desirable to specify it in
terms of Reynolds number and shear rate. Is the low-Reynolds-number asymptotic
solution approximately valid for Reynolds numbers of order unity as is the Oseen’s
solution for the drag force? Similarly, beyond what Reynolds number and below what
shear rate does Auton’s solution apply in a viscous fluid? Then there is the question of
the validity of the equality C

L
¯C

M
. It has been shown in several previous numerical

studies (see especially Rivero, Magnaudet & Fabre 1991, and Magnaudet, Rivero &
Fabre 1995 for the case of bubbles) that the added mass coefficient of a sphere is a true
constant and is in particular independent of the magnitude of the acceleration. Does
the same result hold at high Reynolds number for the lift coefficient? Is this result also
valid in transient situations? Finally, in contrast to the case of a solid sphere for which
the vorticity produced by the no-slip condition increases continuously with the
Reynolds number, two asymptotic solutions involving different physical mechanisms
are available for a bubble. The supplementary asymptotic information valid in the limit
of very high Reynolds number, i.e. Auton’s theory, leads to the question of the general
physical origin of the lift force : what are the ingredients required for obtaining a non-
zero lift force at finite Reynolds number?

The present paper tries to provide some answers to the foregoing questions. For that
purpose the lift force is computed by means of direct numerical simulations of the full
Navier–Stokes equations. The numerical predictions are compared with the available
analytical solutions at both low and high Reynolds number. Steady values of the lift
and drag forces are presented for a wide range of Reynolds number and for two
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moderate shear rates. At low and high Reynolds number, higher shear rates are
considered in order to determine the range of validity of the analytical solutions
mentioned above. The transient flow solutions obtained before the steady state is
reached are also discussed in order to investigate the relaxation effects that may affect
the lift force. The paper is organized as follows. The problem and the non-dimensional
coefficients are defined in §2. Section 3 is devoted to a short presentation of the
numerical code and to careful numerical tests. The results obtained for the flow field
and the hydrodynamic forces are presented and discussed in §§4 and 5, respectively.
The transient behaviour of the lift force is studied specifically in §6 while §7 discusses
the evolution of this force at high Reynolds number when the shear rate increases.
Finally §8 addresses the question of the relation between the lift coefficient and the
added mass coefficient.

2. Statement of the problem

Let us consider a fixed spherical bubble of radius R located at the origin of a
Cartesian frame of reference (e

x
, e

y
, e

z
). The bubble is embedded in a steady linear

shear flow (figure 1) corresponding to the undisturbed velocity field

U¯ (U
o
­αy) e

x
. (1)

The outer fluid is assumed to be Newtonian and its local velocity and pressure are
denoted by V and P, respectively. The incompressible flow around the bubble is then
governed by the full Navier–Stokes equations

¡[V¯ 0,
¥V
¥t

­V[¡V¯®
1

ρ
¡P­¡[τ, (2a, b)

where τ¯ ν(¡V­t¡V ) is the viscous part of the stress tensor Σ¯®PI­ρτ, ρ and ν
denoting the density and the kinematic viscosity of the fluid, respectively.

The boundary condition far from the bubble is obviously

VUU for rU¢, (3a)

where r¯ (x#­y#­z#)"/#. On the bubble surface the normal velocity must vanish,
owing to the impermeability condition. Moreover, the dynamic viscosity of the gas
filling the bubble is assumed to be negligible with respect to that of the surrounding
fluid and the bubble surface is supposed to be free of any surfactant. Under these
assumptions the boundary conditions on the bubble surface are :

V[n¯ 0

n¬(τ[n)¯ 0* for r¯R, (3b)

where n is the outward unit normal to the bubble surface. It is worth noting that the
foregoing shear-free condition implies that the torque experienced by the bubble is
always zero. This is why there is no reason to consider an eventual rotation of the
bubble. The analytical results obtained in the low-Reynolds-number limit by Legendre
& Magnaudet (1997) suggest that this conclusion would not be altered if the flow inside
the bubble was taken into account: these authors considered a drop of arbitrary
viscosity embedded in the flow field defined by (1) and showed that the matching of
both tangential stresses and tangential velocities at the drop surface induces generally
a non-zero rotation of the drop. However, the corresponding rotation rate was found
to decrease from "

#
α for a solid sphere to zero for an inviscid bubble. It seems thus

reasonable to conclude that for a bubble the matching of the tangential velocities at the
interface has a negligible influence on the outer flow whatever the Reynolds number.
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Note that the situation regarding a possible rotation of the bubble would be
dramatically different with a deforming bubble : in that case the torque experienced by
a fixed bubble subjected to conditions (3b) would generally be non-zero and a freely
moving bubble would rotate so as to maintain a zero torque. This rotation is probably
the origin of the negative lift coefficient observed by several authors for highly
deformed bubbles.

Under the above conditions the steady solution of the problem depends upon two
characteristic parameters, namely the Reynolds number Re and the non-dimensional
shear rate Sr, respectively defined by

Re¯
2RU

o

ν
, Sr¯

2Rα

U
o

(4)

(in the remainder of the paper both U
o
and α will be assumed to be positive). The latter

quantity compares the streamwise velocity to the velocity difference induced by the
shear over a distance corresponding to one bubble diameter. In the present work Re
is varied between 0.1 and 500 and most of the computations concern two shear rates,
namely Sr¯ 0.02 and Sr¯ 0.2. The latter value corresponds for example to a 1 mm
diameter bubble rising at 20 cm s−" in a shear of 40 s−", an order of magnitude typical
of turbulent shear layers. Note that throughout this paper we consider a uniform shear
flow extending to infinity in the y-direction. However, in many practical situations
bubbles move into shear layers of finite thickness d

o
. If d

o
}R is large, both situations

are certainly equivalent if the bubble Reynolds number is large (because the
disturbance flow created by the bubble decreases like r−$). The situation may be very
different if Re is small because in that case the disturbance flow decreases like r−" and
the lift force results from weak inertia effects produced by the bubble in the far-field
flow. This is why it would be interesting in the future to study the low-Reynolds-
number motion of a bubble in a shear layer of finite thickness.

As stated in the introduction we are particularly interested in obtaining the lift and
drag forces acting on the bubble, namely

F
L
¯ e

y
[&

S

Σ[ndS, F
D

¯ ex[&
S

Σ[ndS, (5)

where S denotes the surface of the bubble. The results concerning these forces will be
expressed using the lift and drag coefficients C

L
and C

D
defined through the usual

expressions

F
L
e
y
¯ ρ6C

L
U¬ω

o
, F

D
e
x
¯ $

)
ρ

6

R
C

D
rU rU, (6)

where 6 is the bubble volume. In these expressions the unperturbed velocity U and
the vorticity ω

o
¯¡¬U must be evaluated at the centre of the bubble, leading to

U¯U
o
e
x

and ω
o
¯®αe

z
in the present case.

As pointed out in the introduction, two analytical solutions giving the lift coefficient
on a spherical bubble rising steadily in a simple shear flow have been derived so far.
For an inviscid fluid satisfying the condition Sri 1, Auton (1984, 1987) obtained the
result

F
L
¯ #

$
πρR$αU

o
(7a)

which yields the well-known lift coefficient

C
L
¯ "

#
. (7b)

In the opposite limit of very viscous flows, Legendre & Magnaudet (1997) generalized
the analysis performed by Saffman (1965) and McLaughlin (1991) for a solid sphere to
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the case of a spherical drop with an arbitrary viscosity. For an inviscid bubble their
result may be written

F
L
¯

J(ε)

π#

R0αν1
"/#

F !¯
4

π
ρν"/#R#U

o
α"/#J(ε). (8a)

In this expression F ! is the magnitude of the drag force on the bubble in creeping
motion (F !¯ 4πρνRU

o
e
x
), ε is the dimensionless ratio defined by ε¯ (Sr}Re)"/# and

J(ε) is the value of a three-dimensional integral (McLaughlin 1991). The case εU¢
corresponds to the high-shear-rate limit considered by Saffman and the corresponding
value is J(¢)¯ 2.255. Using (6) and (8a) one obtains the lift coefficient

C
L
¯

6

π#

(ReSr)−"/#J(ε). (8b)

The results (7b) and (8b) synthesize the present theoretical knowledge concerning the
lift force produced on a spherical bubble by a simple shear flow. It must be stressed that
both results have been derived under the assumption of a steady or nearly steady
motion so that no theoretical information concerning possible transient effects affecting
the lift force is available. In what follows all the computations start from the
undisturbed flow field V(x, y, z, t¯ 0)¯U(y) and the transient stage will allow us to
investigate some of these effects.

3. Numerical method

3.1. Algorithm, grid system and boundary conditions

The computations reported below have been carried out with the  code developed
in our group. This code solves the three-dimensional unsteadyNavier–Stokes equations.
The spatial discretization scheme used in  has already been thoroughly described
by Magnaudet et al. (1995) to which the reader is referred. Let us just mention that the
momentum equations are written in velocity–pressure variables in a general system of
orthogonal curvilinear coordinates. The discretization makes use of a staggered mesh
and the equations are integrated in space using a finite volume method with second-
order accuracy. The time-advancement algorithm used in the three-dimensional
version of  has been described by Calmet & Magnaudet (1997). Advective and
viscous terms are computed through a second-order Runge–Kutta}Crank–Nicolson
procedure while incompressibility is satisfied at the end of each time step by solving a
Poisson equation for an auxiliary potential. In the present case we are mainly
concerned with a steady solution which is obtained after several thousands of time
steps when the maximum variation of the velocity field between two consecutive time
steps becomes less than a certain value. However in §6 we will take advantage of the
fact that the overall algorithm is second-order accurate in time to discuss the transient
behaviour of the lift force.

A detail of the grid used in the present work is presented in figure 2. The three-
dimensional orthogonal grid is obtained by rotating a two-dimensional grid around the
axis e

x
with an angle φ. The two-dimensional grid in the plane (x, y) is obtained by

inverting the equations defining the streamlines ψ¯ const. and the equipotential lines
ζ¯ const. of the potential flow around a circle (see Magnaudet et al. 1995). Our
previous studies (see e.g. Blanco & Magnaudet 1995) have shown that whatever the
Reynolds number, no recirculation occurs behind a spherical clean bubble rising in a
uniform flow. It seems thus reasonable to assume that no vortex shedding can occur
for a spherical bubble moving in a linear shear flow, at least for moderate shears. Using
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this assumption we consider that the plane z¯ 0 is a symmetry plane for the present
problem. Therefore, it is only necessary to solve the governing equations in a half-
space, say z& 0.

Using this simplification, it appears that the computational domain is limited
internally by a half-sphere corresponding to the bubble surface and externally by a
half-cylinder. Several different boundary conditions are required on this outer
boundary. The inflow velocity condition (3a) is imposed upstream, i.e. for a large
negative value of x (this value will be specified later). A symmetry condition stating that
both the normal velocity and the tangential stresses are zero is imposed on the plane
z¯ 0. On the cylindrical boundary corresponding to large values of (y#­z#)"/# the
boundary condition states that the normal velocity is zero and that the normal
derivative of the tangential velocity corresponds to the unperturbed shear defined by
(1), i.e. V[n¯ 0 and n[¡[V®(V[n)n]¯α(e

y
[n) e

x
, n being the local unit normal to the

boundary. Finally, a parabolic approximation of the governing equations allowing the
flow to leave freely the domain without inducing significant perturbations is imposed
downstream, i.e. for large positive values of x (see Magnaudet et al. 1995 for a detailed
description). A specific condition is needed on the axis e

x
. This axis corresponds to the

intersection of the Nφ planes φ¯ const. composing the grid. Thus for a given point
(x¯x

o
, y¯ 0, z¯ 0) one finds Nφ different values of the velocity V

o
normal to the axis

(figure 3). These Nφ values are not independent because they represent the projections
on each plane φ¯ const. of the actual flow velocity at the point (x¯x

o
, y¯ 0, z¯ 0).

At first glance the values of V
o
seem unimportant because no mass or momentum flux
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crosses the e
x
-axis since the corresponding area is zero. However, these values are

needed because they are involved in the expression for the normal viscous stresses on
the staggered mesh. Several different boundary conditions were tested in order to
obtain the best evaluation of these stresses (Legendre 1996). The best results were
obtained by evaluating V

o
through a second-order extrapolation of the neighbouring

values V
j
and V

j+"
up to the axis (see figure 3).

The (ζ,ψ,φ)-grid used in the simulations reported below is made of 90¬45¬32
nodes, the bubble surface being discretized with 22¬32 nodes in the ζ- and φ-
directions, respectively. A constant spacing is used along the azimuthal (φ) direction.
In the ζ- and ψ-directions, i.e. in the (x, y)-plane, a geometrical progression ensuring
that the ratio between two successive cells is less than 1.15 is chosen. In the immediate
vicinity of the bubble surface, the thickness of the first rows of cells is about 0.01R. This
spacing allows us to locate four grid points within the boundary layer at the highest
Reynolds number (Re¯ 500). This choice is satisfactory because it was shown by
Blanco & Magnaudet (1995) that the present code captures properly viscous effects
when this number of grid points lie in the boundary layer. Very close to the poles of
the bubble the cells are larger owing to the singularity of the streamline ψ¯ 0 at these
points. This implies that the boundary layer is less accurately described in these
regions. This does not cause any serious problem of accuracy, especially in the
evaluation of the hydrodynamic forces, because the axisymmetric character of the grid
makes the contribution of the neighbourhood of the poles very small.

The computational domain extends to the same distance R¢ upstream, downstream
as well as in the direction normal to the e

x
-axis. Since the choice of R¢ was found to

be crucial for computing accurately the lift force, this point will be discussed in detail
in the next subsection. A salient characteristic of the present computations is that,
owing to the existence of the shear, the order of magnitude of the unperturbed velocity
U may vary by more than one order of magnitude between the e

x
-axis and the outer

boundary (y#­z#)"/#¯R¢. This fact has two consequences which explain why most of
the computations reported below concern moderate shear rates. First, owing to the
well-known CFL condition, the time step required to ensure the stability of the
numerical algorithm is strongly reduced compared to usual situations where the
velocity keeps a constant order of magnitude throughout the computational domain.
Secondly, the unperturbed velocity is negative for y

o
!®U

o
}α. Thus when the shear

increases, the streamwise velocities become necessarily negative for large negative
values of y. This leads to numerical difficulties because the role of the inlet and outlet
boundaries is reversed in these regions of the flow. More precisely if the outflow
boundary conditions are imposed everywhere on the boundary x¯­R¢ without
taking into account the actual direction of the local flow, numerical perturbations can
be introduced in the computational domain and can contaminate the flow field,
especially if the Reynolds number is large. To avoid this problem, in most of the high-
shear-rate computations reported in §7 the boundary condition imposed in the plane
x¯­R¢ is modified as follows. The usual parabolic outflow condition is imposed at
all points of the boundary belonging to the disk (y#­z#)"/#!U

o
}α (where the

unperturbed velocity is positive) while the inflow condition V¯U is imposed in the
ring U

o
}α! (y#­z#)"/#!R¢. This mixed condition enables the far wake to leave the

computational domain while preventing numerical perturbations being generated by
the negative velocities.

Near the bubble the grid lines shown in figure 2 are highly curved. Thus the
curvilinear source terms involved in the momentum equations (see Magnaudet et al.
(1995) have a significant weight in that crucial region. It is obviously very important
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to evaluate correctly these terms and more precisely the curvature radii that they
involve. To reach this goal, Legendre (1996) developed a procedure allowing us to
ensure that these curvilinear terms cannot create artificial sinks or sources of
momentum in the discrete equations. Basically what must be enforced in the
momentum equations are the fundamental properties of constant vectors and tensors
expressed in a discrete sense. For example one must ensure that the discrete value of
the divergence of any constant tensor T built on the vectors e

x
, e

y
and e

z
(for example

T¯ e
x
e
y
) is zero everywhere. Using the expression for the divergence of a second-

order tensor in curvilinear orthogonal coordinates, the foregoing requirement can be
written under the form of three equations, one along each local coordinate line. Then
these equations can be put in finite volume form and can be discretized exactly with the
same spatial schemes as those used for solving the momentum equations. Knowing the
local value of each component of the constant tensor T, one obtains three relations
between the radii of curvature. A linear system is then formed and solved in order to
determine the local value of the radii of curvature which will finally be used in the
momentum equations.

3.2. Preliminary testing

The  code has been extensively used in the past, especially for axisymmetric flows
around bubbles and rigid particles (see Magnaudet et al. 1995; Blanco & Magnaudet
1995; Cuenot et al. 1997) or for three-dimensional turbulent flows (Calmet &
Magnaudet 1997). Consequently only tests related to the geometrical or physical
specificities of the present problem are required to ensure that the computational
results are correct.

A first series of tests was carried out in order to determine the optimal size R¢ of the
computational domain. Five domains extending up to R¢}R¯ 20, 40, 60, 80 and 100,
respectively, were used at both low and high Reynolds number (Re¯ 0.1, 1, 500) for
a non-dimensional shear rate Sr¯ 0.02. The drag and lift coefficients obtained in these
simulations are reported in table 1. At high Reynolds number, it is clear that a domain
extending up to 20 radii is sufficient because no modification is noticed either to the
drag force or to the lift force when the size of the domain is increased. In contrast, for
the low-Reynolds-number cases it appears that confinement effects have a tremendous
influence on the lift force. The results obtained for Re¯ 0.1 show that, for the present
value of Sr, even a domain extending up to 100 radii is not sufficient to capture
properly all the inertia effects responsible for the lift force. This conclusion is not
very surprising: the theoretical analysis leading to (8a) shows that the inertia and
viscous effects induced by the bubble become comparable at a distance R

S
}R¯

O(2(ReSr)−"/#). In the present case one gets R
S
}RE 45, a result suggesting that R¢}R

¯ 100 is not sufficient. Based on these tests, the computation domain chosen for almost
all the simulations extends up to 80 radii when Re" 0.2. To save computational
resources, the size of the domain was only increased up to 100 radii for Re¯ 0.1 and
0.2. Thus, as already pointed out, the results obtained for the lift force at Re¯ 0.1 and
Sr¯ 0.02 are certainly not very accurate. No computation was carried out at Reynolds
numbers lower than 0.1 because of the foregoing limitation and also because our main
interest in the low-Reynolds-number limit was to determine the bounds of validity
of the asymptotic solution (8b), a goal which can be reached by exploring the range
0.1%Re% 1.

A second series of simulations was carried out in order to check the numerical
condition imposed on the axis e

x
. The first test consisted in computing the flow induced

around the bubble by the undisturbed flow U¯ (U
o
­αy) e

x
parallel to e

x
(Case 1) and

by the undisturbed flow U¯ (U
o
­αx) e

y
orthogonal to e

x
(Case 2). Then the drag and
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20 radii 40 radii 60 radii 80 radii 100 radii

Re¯ 0.1 C
D

172.2 162.2 163.3 162.5 162.1
C

L
2.87 5.01 6.57 7.52 7.97

Re¯ 1 C
D

17.88 17.52 17.49 17.47 17.46
C

L
0.997 0.631 0.486 0.421 0.419

Re¯ 500 C
D

0.0890 0.0890 0.0889 0.0889 0.0889
C

L
0.489 0.489 0.488 0.488 0.488

T 1. Effect of the size of the computational domain on the drag and lift coefficients
(Sr¯ 0.02)

Case 1
U¯ (U

o
­αy) e

x

Case 2
U¯ (U

o
­αx) e

y

Difference
(%)

C
D

0.0889 0.0886 0.3
C

L
0.488 0.490 0.4

T 2. Comparison between the lift and drag coefficients found for the unperturbed flows
U¯ (U

o
­αy) e

x
and U¯ (U

o
­αx) e

y
at Re¯ 500

C
D

C
L

CΩ

Re¢ ReΩ Num. Anal. Num. Anal. Num. Anal.

0 0.4 — — — — 160.5 160
0.1 0.4 247.1 244.5 0.371 0.375 161.1 160

T 3. Torque, lift and drag coefficients on a rotating solid sphere moving in a uniform flow
(ReΩ ¯ 0.1). Comparison with the analytical results of Lamb (1932) and Rubinow & Keller (1961)

lift forces calculated in these two configurations were compared. In Case 2 the primary
flow had to cross the e

x
-axis while in Case 1 only the secondary velocities had to cross

this singular axis. This comparison was thus relevant for estimating the performance
of the numerical treatment of the singularity on the axis e

x
. The results obtained in

both configurations at Re¯ 500 for Sr¯ 0.02 are reported in table 2). The difference
is less than 1% for both the drag and the lift coefficients. To confirm this positive
conclusion another test was performed at low Reynolds number. It consisted in
computing the flow around a solid sphere rotating with the angular velocity Ω around
the e

z
-axis (the shear-free bubble could not be used for that purpose because its

rotation does not induce any motion in the liquid). This test is also interesting because
the main flow must cross the e

x
-axis on both sides of the sphere. When no mean flow

exists, the well-known solution of the Stokes equation (see Lamb 1932, p. 589) leads
only to a torque with an associated moment coefficient CΩ equal to 64}ReΩ (with ReΩ ¯
(2R)#Ω}ν). In contrast when the sphere moves with a velocity U¢, a drag and a lift
force appear (Rubinow & Keller 1961). For low Reynolds numbers the drag coefficient
is identical to the one provided by Oseen’s solution (see Lamb 1932, p. 617), i.e.
C

D
¯ 24}Re¢­9}2 (with Re¢ ¯ 2RU¢}ν) and the moment coefficient is unchanged.

Rubinow & Keller found that in this flow regime the lift coefficient C
L

defined through
(6) was at first order C

L
¯ 3}8. The numerical tests were performed at ReΩ ¯ 0.4 for

both Re¢ ¯ 0 and 0.1. The results of these tests are reported in table 3. The difference
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between the numerical prediction and the analytical solution never exceeds 1.5%. This
result is very satisfactory since it was obtained with a grid which is not very well
adapted to the flow under consideration. When a polar grid is used, the streamlines are
parallel to the grid lines and much more accurate results are obtained (Legendre 1996).
The two foregoing tests allow us to conclude that, whatever the Reynolds number the
condition imposed on the singular axis e

x
disturbs the flow only very slightly, even

when the streamlines of the main flow have to cross this axis.

4. The flow field

Having established the ability of the numerical code to compute asymmetric flows
around a sphere, we turn now to explore the characteristics of the shear flow around
the bubble. Figures 4 and 5 show the disturbance velocity field �¯V®U in the
symmetry plane z¯ 0 for various flow conditions. The general structure corresponding
to a uniform flow (Sr¯ 0) and the Reynolds number effects can be easily recognized.
At high Reynolds number (figure 4a–c), the disturbance flow increases rapidly with the
distance to the bubble, except in the thin wake which is clearly present downstream
of the bubble. In contrast at low Reynolds number (figure 5) the disturbance flow
remains significant at larger distances from the bubble and preserves the fore-and-aft
symmetry with respect to the bubble. When the shear rate is weak (figure 4a), the flow
field is almost symmetric about the e

x
-axis. Then, when the shear rate increases and the

Reynolds number is high, the difference between the upper half-plane φ¯ 0 and the
lower one φ¯π becomes more and more prominent (figures 4b and 4c). At the highest
shear rate (figure 4c), the wake is very short and has an unusual structure: its thickness
seems to decrease quickly with the distance to the bubble and its mean direction is
deflected towards the upper half-plane suggesting suction by the lower pressures found
in that part of the flow. Downstream of the bubble the structure of the disturbance flow
is completely dominated by the role of the shear : the y-component of the velocity is
negative everywhere, meaning that the symmetry with respect to the plane y¯ 0 is not
recovered at such distances. Comparing figures 4(b) and 5 clearly demonstrates that for
a given shear rate the asymmetry increases with the Reynolds number: for Re¯ 1, the
flow looks nearly symmetric while the deflection of the wake is obvious for Re¯ 500.

Another interesting view of the flow structure is provided by figures 6 and 7, which
show the streamwise component of the vorticity, ω

x
(normalized by the shear α), in the

equatorial plane x¯ 0 (figure 6) and in the plane x}R¯ 2 located one radius
downstream of the bubble (figure 7). This vorticity component, called ‘trailing
vorticity ’ by Lighthill (1956) is a central ingredient of the shear flow around a sphere :
it is zero in the primary flow defined by (1) as well as in the boundary layer and the
wake of a sphere embedded in an axisymmetric flow. It results basically from the tilting
and stretching of the primary vorticity ®αe

z
by the spanwise velocity gradient

¥(V[e
x
)}¥z induced by the presence of the sphere. The asymptotic analysis of Lighthill

(1956) and Auton (1984, 1987) predicts that ω
x
is a linear function of sinφ. This implies

that in the limit SrU 0, ω
x

must be symmetric with respect to the plane y¯ 0. Figures
6 and 7 show that this is still approximately true for Sr¯ 0.2. However, nonlinear
effects due to the finite value of Sr produce slightly larger values of ω

x
in the lower half

of the flow. Figure 6 illustrates the influence of viscous effects on the spatial structure
of the ω

x
distribution close to the bubble : while ω

x
is negative (for z" 0) at Re¯ 50

(figure 6a), an outer region of positive values appears at Re¯ 100 (figure 6b). For
larger values of Re (figures 6c and 6d ) the negative values have completely
disappeared. This evolution is related to that of the azimuthal velocity Vφ described
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(a)

(b)

(c)

y

x

y

x

y

x

F 4. Disturbance velocity field �¯V®U in the plane (e
x
, e

y
) for Re¯ 500.

(a) Sr¯ 0.02; (b) Sr¯ 0.2; (c) Sr¯ 0.4.
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y

x

F 5. Disturbance velocity field �¯V®U in the plane (e
x
, e

y
) for Re¯ 1 and Sr¯ 0.2.
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F 6. Iso-values of the streamwise vorticity ω
x

(normalized by α) in the equatorial plane
x}R¯ 0. (a) Re¯ 50; (b) Re¯ 100; (c) Re¯ 300; (d ) Re¯ 500; ——, positive values ; - - - - -, negative
values (the increment between two consecutive iso-values is ∆ω

x
¯ 0.1).
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F 7. As figure 6 but in the plane x}R¯ 2 (the increment between consecutive
iso-values is ∆ω

x
¯ 5).

below. It shows that for z" 0, the velocity gradients induced by viscous effects tend to
produce negative values of ω

x
while the velocity gradients resulting from the inviscid

vortex stretching mechanism generate positive values of ω
x
. At the highest Reynolds

number, figure 6(d ) indicates that the maximum value of ω
x

is of the same order of
magnitude as the unperturbed shear. Nevertheless, this value cannot be compared with
those obtained in the inviscid limit by Lighthill and Auton because very close to the
bubble viscous effects are always significant. In contrast, such a comparison can be
carried out far enough from the bubble. For example the values tabulated by Auton
yield ω

x
(x}R¯ y}R¯ 0, z}R¯ 1.32)¯ 0.243 while present results obtained at Re¯

500 yield ω
x
¯ 0.215.

Figure 7 shows that, downstream of the bubble, the significant values of ω
x

are
concentrated within two thin vortex tubes whose centres are located very close to the
x-axis. The effect of the Reynolds number is also clearly apparent in this figure. At low
to moderate Reynolds number, say for Re% 100 (figures 7a and 7b), the maximum of
ω
x

is small because viscous effects quickly diffuse the trailing vorticity once it has been
produced around the sphere. This maximum increases very strongly with Re and
reaches values which are about two orders of magnitude larger than the primary
vorticity for the highest Reynolds numbers considered here (figures 7c and 7d ). As
previously, these maxima cannot be compared with those predicted by the inviscid
theory because of the presence of viscous effects in the central region of the wake. In
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contrast this comparison is legitimate in the outer region. Using the discrete values
tabulated by Auton yields for example ω

x
(x}R¯ 2, y}R¯ 0, z}RE 0.35)E 3.05 while

the corresponding value in figure 7d ) is 3.30. The two quantitative comparisons
reported above suggest that for Re¯ 500, present values of ω

x
found in the nearly

inviscid regions of the flow are in good agreement with those predicted by the inviscid
theory, the small differences being probably due to small nonlinear effects related to the
finite value of Sr. It must be noted that further downstream ω

x
keeps significant values

for high enough Reynolds numbers because the disturbance produced by the bubble
is slowly dissipated by viscosity. For example the numerical results indicate that for
Re¯ 500 and Sr¯ 0.2 the maximum of ω

x
at x}R¯ 25 is still about 1.3, while it is about

0.1 for x}R¯ 50. These values show that the trailing vorticity still has the same order
of magnitude as the imposed shear at downstream distances larger than ten bubble
diameters.

In view of the discussion on the hydrodynamic forces, a detailed description of the
distribution of the tangential velocity at the surface of the bubble is also in order.
Actually the tangential velocity has two components, namely one meridian component
Vθ(θ,φ)¯V(r¯R, θ,φ)[eθ lying in the plane φ¯ const. and one azimuthal component
Vφ(θ,φ)¯V(r¯R, θ,φ)[eφ lying in the plane θ¯ const. normal to the unperturbed
flow (see figure 1 for the definition of the local axes). Indeed, Vφ is a crucial quantity
for the present problem since the lift force results directly from the fact that the
pressure and the normal viscous stresses have a non-constant azimuthal distribution.
Taking into account the kinematic boundary condition at the bubble surface, the
governing equation for Vφ may be written (Batchelor 1967, p. 601)

V[¡Vφ­
cotan θ

R
Vθ Vφ ¯®

1

ρR sin θ

¥P
¥φ

­ν~#Vφ­
ν

R# sin# θ 92 cos θ
¥Vθ

¥φ
®Vφ: . (9)

Since U[eφ ¯ 0, Vφ vanishes far from the bubble, i.e. Vφ is a secondary velocity which
does not directly result from the unperturbed flow. From (9) it is straightforward to see
how Vφ is produced at low Reynolds number: owing to the shear α, the meridian
velocity Vθ(θ,φ¯ 0) at the top of the bubble is larger than its counterpart Vθ(θ,φ¯π)
at the bottom. The viscous term of (9) involving ¥Vθ}¥φ is thus non-zero and the
balance between the various terms induces non-zero values of Vφ and ¥P}¥φ (however
it must be noted that in the creeping flow limit Vφ remains zero because ¥P}¥φ balances
exactly the term proportional to ¥Vθ}¥φ). In contrast, in the high-Reynolds-number
limit no source term exists in (9). Under such conditions the origin of Vφ must be sought
in the balance equation determining the pressure field: taking the divergence of (2b)
one gets

®
1

ρ
~#P¯¡[(V[¡V ). (10)

Since the right-hand side of (10) involves terms like Vθ and ¥Vθ}¥θ which depend on φ,
the pressure field is necessarily non-uniform along the azimuthal direction, i.e. a
pressure gradient ¥P}¥φ appears. Then (9) shows that Vφ results from a balance
between the advective terms and this azimuthal pressure gradient. Since no azimuthal
velocity exists when Sr¯ 0, Vφ scales necessarily with Rα. Consequently Vφ is generally
several orders of magnitude smaller than Vθ whose maximum lies in the range
["
#
U

o
, $
#
U

o
] when Sr¯ 0 (see Magnaudet et al. 1995). For that reason it is more

convenient to study the tangential velocity field at the bubble surface using the
decomposition

V (r¯R, θ,φ)¯U
o
V

U
(θ)­Rα�h (θ,φ), (11)
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F 8. Meridian velocity V
Uθ(θ) corresponding to Sr¯ 0. ——, potential solution; ——, Stokes

solution; III, numerical results : D, Re¯ 500; *, Re¯ 100; ^, Re¯ 10; x, Re¯ 1;
*, Re¯ 0.1.
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F 9. Surface iso-contours of the azimuthal velocity �h φ(θ,φ) for Sr¯ 0.02: (a) Re¯ 0.1;
(b) Re¯ 1; (c) Re¯ 10; (d ) Re¯ 500; ——, positive values ; III, negative values. The flow is
from left to right and the positive velocities are directed towards the bottom of the bubble.
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F 10. As figure 9 but for Sr¯ 0.2.

where V
U
(θ)¯V

Uθ(θ) eθ is the non-dimensional velocity at the surface of the bubble
corresponding to the axisymmetric situation Sr¯ 0, and �h is the non-dimensional
velocity resulting from the presence of the shear. The meridian velocity V

Uθ(θ) obtained
by solving the axisymmetric flow around the bubble at several different Reynolds
numbers in the range 0.1!Re! 500 is plotted in figure 8. One sees in that figure that,
whatever the Reynolds number, V

Uθ has a nearly symmetric distribution with respect
to the equatorial plane θ¯ "

#
π and that a significant difference exists between the actual

distribution and the potential solution even for Re¯ 500. The iso-values of the
azimuthal component �h φ(θ,φ) are plotted in figures 9 and 10 for Sr¯ 0.02 and Sr¯
0.2 and for several values of the Reynolds number. It is clear in these figures that the
Reynolds number has a major influence on both the intensity and the sign of �h φ. At low
Reynolds number �h φ is negative everywhere, i.e. the azimuthal velocity is uniformly
directed towards the top of the bubble. Then when the Reynolds number increases, the
momentum diffusion in the azimuthal direction decreases, resulting in a progressive
change in the sign of �h φ starting at the upstream part of the bubble. For Re¯ 500, �h φ
is positive over nearly two thirds of the bubble. However, the influence of the viscosity
is still significant at that Reynolds number because Auton’s (1984, 1987) calculation
predicts positive values of �h φ everywhere on the surface for an inviscid flow. The
magnitude of �h φ is also greatly affected by the Reynolds number: at Re¯ 500 the
maximum of �h φ is about 0.9 while the maximum negative value found at Re¯ 0.1 is
about ®0.06. Finally, comparison of figures 9 and 10 also shows that the distribution
of �h φ is affected by the magnitude of Sr when the Reynolds number is moderate. This
is especially the case for Re¯ 1 where �h φ is positive over a much larger part of the
bubble when Sr¯ 0.02 than when Sr¯ 0.2.
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)
π ; x,

φ¯ "

#
π ; V, φ¯ &

)
π ; *, φ¯ $

%
π ; k, φ¯ (

)
π), for Re¯ 10 and Sr¯ 0.2.

For Sr¯ 0.02, the plot of the numerical results (not shown here) reveals that for
Re& 5, �h follows the spatial distribution found by Lighthill (1956) for an inviscid flow
and a small shear rate, namely

�h [eθ ¯ �h θ(θ,φ¯ 0) cosφ, �h [eφ ¯ �h φ(θ,φ¯ "

#
π) sinφ. (12a, b)

The same behaviour is also observed for Sr¯ 0.2 in a similar range of Re. For Re¯ 10
(figure 11a, b) the results follow the foregoing distribution extremely well. The same
is true at Re¯ 1 for the meridian velocity (figure 12a) but not for the azimuthal
velocity since figure 12(b) reveals a more complex dependence on φ. It will be shown
later that this behaviour seems to correspond to the transition between the regime
dominated by viscous diffusion and the inertial regime. The distributions (12a, b) result
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F 12. As figure 11 but for Re¯ 1.

from spatial symmetries of the vorticity field. Therefore the behaviour displayed in
Figure 11 shows that the vorticity field retains the same spatial structure at Reynolds
numbers of a few units as that in inviscid flow.

The tangential components �h θ(θ,φ¯ 0) and �h φ(θ,φ¯ "

#
π) corresponding to Sr¯ 0.02

are plotted in figures 13 and 14 for different Reynolds numbers. They are compared
with the tangential velocities calculated in inviscid fluid by Auton (1984, 1987) and with
those derived from the creeping flow solution, namely

�h Stθ ¯ sin# θ cosφ and �h Stφ ¯ 0. (13a)

As expected, the Reynolds number has a tremendous effect on both tangential
velocities, and the comparison between numerical results and Auton’s calculation
shows that viscous effects remain significant even for Re¯ 500. This result is not
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surprising since it was already shown in figure 8 that at this Reynolds number the
primary meridian velocity V

Uθ(θ) is about 10% lower than the potential solution
V
Uθ(θ)¯ $

#
sin θ used in Auton’s theory. In contrast the secondary velocity �h θ(θ, 0) is

found to be higher by about 10% than Auton’s prediction (see figure 13). This increase
is certainly due to the vorticity generated at the bubble surface by the shear-free
condition; this vorticity is not taken into account in the inviscid theory of Auton but
it may well contribute to increase the production of �h θ (this could be checked by
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comparing numerical and analytical values of �h θ just outside the boundary layer but
Auton only calculated the tangential velocities right on the sphere). Compared to
Auton’s theory, this positive difference in �h θ balances approximately the negative
difference observed in V

Uθ(θ), leading to values of the product �h θ V
Uθ which are very

close. The remark is important in view of the next section because it is easy to show
(see Auton 1987) that at first order in Sr the lift force results from the integration of
the product ρ�h θ V

Uθ on the bubble. It is also observed in figure 13 that when the
Reynolds number increases, �h θ becomes more and more negative close to θ¯ 0 and
more and more positive close to θ¯π. This means that in the symmetry plane z¯ 0
the front stagnation point moves upwards (i.e. towards increasing y) when Re increases
while the rear stagnation point moves downwards. This behaviour can be also clearly
observed in figure 4(c). When the Reynolds number decreases the distributions of both
�h θ(θ, 0) and �h φ(θ, "

#
π) tend to become symmetric with respect to the equatorial plane



Lift force on a bubble in a �iscous linear shear flow 103

θ¯ "

#
π. In contrast to the magnitude of �h θ(θ, 0) which is roughly maintained, the

magnitude of �h φ(θ, "
#
π) decreases by several orders, as could be anticipated from figure

9. Figures 13 and 14 show that at low Reynolds number (see especially Re¯ 0.1), both
tangential components approach the creeping flow solution (13a). However, it is
known that under such conditions the lift force results from small but non-zero inertia
effects. In order to estimate properly these effects it is useful to use (13a) and to write
the meridian velocity �h θ in the form

�h θ(θ,φ)¯ (sin# θ­�$θ (θ,φ)) cosφ. (13b)

The tangential components �$θ (θ,φ) and �h φ(θ,φ)}sinφ corresponding to Re¯ 0.1 are
plotted in figures 15(a) and 15(b) for Sr¯ 0.02 and Sr¯ 0.2, respectively. Both
components now have a comparable order of magnitude. A comparison of the two
figures reveals that for the cases considered here both the amplitude and the θ-
dependence of �$θ (θ,φ) and �h φ(θ,φ)}sinφ are only very slightly dependent on Sr.
Moreover, the azimuthal variation of both quantities is small even for Sr¯ 0.2. This
result contrasts with the one displayed by figure 12(b) for Re¯ 1. Summarizing the
behaviour revealed by figures 11(b), 12(b) and 15(b) one can thus conclude that the
azimuthal dependence of �h φ is generally proportional to sinφ except around Re¯ 1
where viscous effects and inertia effects are of similar importance.

5. The hydrodynamic forces

5.1. Pressure and �iscous stress distributions

As is customary, the distribution of pressure and viscous effects at the bubble surface
can be studied by defining a pressure coefficient C

p
and a viscous stress coefficient C

n

through

C
!
(θ,φ)¯

P(θ,φ)®P¢

"

#
ρU #

!

, C
n
(θ,φ)¯

(n[τ[n) (θ,φ)

"

#
U #

!

. (14)

In (14) P¢ is a reference pressure chosen on the upstream boundary. Both coefficients
are plotted in figure 16 for various values of the Reynolds number. In contrast with the
more familiar distribution of the viscous stress on a solid sphere, C

n
reaches its

maximum at θ¯ 0 and θ¯π because the local strain rate of the flow is maximum in
the stagnation regions. For the two shear rates Sr¯ 0.02 and Sr¯ 0.2 it appears that
C

p
and C

n
depend only weakly on φ. In other words the distribution of both

coefficients is close to the one corresponding to a uniform flow (Sr¯ 0). At moderate
to high Reynolds number the azimuthal dependence of C

p
is maximum near the

equator of the bubble (θ¯ "

#
π), while this maximum is located near θ¯ "

#
π and θ¯ $

%
π

at low Reynolds number. Concerning C
n
, the maximum azimuthal dependence occurs

near θ¯ "

%
π and θ¯ $

%
π whatever the Reynolds number. As could be expected, the

variation of C
p

and C
n

with respect to φ becomes more important when the shear rate
increases but it remains much weaker than the variation with respect to θ, even for
Sr¯ 0.2. This fact suggests that if the bubble were allowed to deform, its deformation
would remain much weaker along the φ-direction than along the θ-direction, i.e. the
bubble would not depart strongly from an axisymmetric shape. Nevertheless one
cannot conclude that in that case the lift force experienced by the bubble would remain
unaltered: as pointed out in §2 the bubble would then rotate and the computations
performed by Ervin & Tryggvason (1994) and Takagi & Matsumoto (1995) for a
deformable bubble rising in a shear flow show that the sign of the lift force can reverse
when the Weber number exceeds a certain value.
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F 16. Distribution of the surface coefficients for Sr¯ 0.02 and Sr¯ 0.2. (a) C
p

for Re¯ 500;
(b) C

n
for Re¯ 500; (c) C

p
for Re¯ 10; (d ) C

n
for Re¯ 10; (e) C

p
for Re¯ 0.1; ( f ) C

n
for

Re¯ 0.1. ——, Sr¯ 0.02; III, Sr¯ 0.2. D, φ¯ 0; *, φ¯ "

#
π ; ^, φ¯π.

5.2. The drag force

The numerical values of the drag coefficient C
D
(Re,Sr) are reported in table 4 for

Reynolds numbers ranging between 0.1 and 500 and for the two shear rates Sr¯ 0.02
and Sr¯ 0.2. These values are compared with the drag coefficient C

DU
(Re) computed

at the same Reynolds number and on the same (ζ,ψ)-mesh for a uniform flow
corresponding to Sr¯ 0. It may first be noted that C

DU
is in excellent agreement with

the theoretical expressions for the drag force: for Re& 100 the difference between the
computations and Moore’s (1963) theory is less than 1% while for Re¯ 0.1 the
difference with the low-Reynolds-number theory of Taylor & Acrivos (1964) is less
than 0.2%. The comparison between C

D
and C

DU
reveals that for such shear rates the
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F 17. Lift coefficient C
L

�s. Re. E, Sr¯ 0.02; _, Sr¯ 0.2; ——, equation (8b) for Sr¯ 0.02;
- - - - -, (8b) for Sr¯ 0.2; ——, C

L
¯ 0.5, (7b) ; ——, (15) ; III, (18).

Sr¯ 0.02 Sr¯ 0.2

Re C
DU

C
D

r1®C
DU

}C
D
r C

D
r1®C

DU
}C

D
r

0.1 162.2 162.1 0.001 162.2 0.001
0.2 82.3 82.4 0.001 82.4 0.001
0.5 33.6 33.5 0.003 33.7 0.003
1 17.4 17.5 0.006 17.5 0.006
2 9.31 9.30 0.001 9.32 0.001
5 4.27 4.25 0.005 4.29 0.005

10 2.43 2.42 0.004 2.44 0.004
20 1.403 1.396 0.002 1.403 0
50 0.670 0.669 0.002 0.673 0.004

100 0.373 0.374 0.004 0.377 0.011
300 0.141 0.142 0.007 0.145 0.021
500 0.0880 0.0889 0.010 0.0918 0.055

T 4. Drag coefficients C
D

in the range 0.1%Re% 500 for Sr¯ 0.02 and Sr¯ 0.2

effect of the shear on the drag force is very small : the relative difference between both
coefficients is found to be less than 1% for Sr¯ 0.02 and less than 5% for Sr¯ 0.2.
The same conclusion was reached by Dandy & Dwyer (1990) for a solid sphere
subjected to similar shear rates at Reynolds numbers ranging between 0.1 and 100. The
explanation of this behaviour is given by the surface distributions plotted in figure 16:
since the azimuthal variations of C

p
and C

n
are nearly symmetric with respect to the

midplane φ¯ "

#
π and since their meridian distribution in this plane is very close to the

one found in uniform flow, the change experienced by the drag force is very small. The
values reported in table 4 show that the existence of the shear leads generally to a small
increase of the drag force. At low Reynolds number this conclusion agrees qualitatively
with the result of Harper & Chang (1968) who generalized the work of Saffman (1965)
by calculating the drag and the lift induced by the shear on a solid sphere moving in
an arbitrary direction. In all cases they found an increase of C

D
proportional to

(Sr}Re)"/#. Unfortunately no quantitative comparison can be made with their
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(a) Sr¯ 0.02 Sr¯ 0.2

Re C
LP

C
Lν C

L
C

LP
C

Lν C
L

0.1 2.83 4.05 7.97 2.92 4.71 7.63
0.2 1.61 2.23 3.84 2.01 3.05 5.06
0.5 0.669 0.352 1.02 1.12 1.25 2.37
1 0.461 ®0.040 0.421 0.709 0.458 1.16
2 0.419 ®0.093 0.325 0.489 0.0310 0.520
5 0.402 ®0.0931 0.309 0.402 ®0.0928 0.309

10 0.403 ®0.0730 0.330 0.401 ®0.077 0.324
20 0.413 ®0.0493 0.364 0.413 ®0.0513 0.362
50 0.442 ®0.0279 0.414 0.443 ®0.0300 0.412

100 0.469 ®0.0178 0.451 0.467 ®0.0176 0.450
300 0.490 ®0.0077 0.482 0.487 ®0.0076 0.480
500 0.493 ®0.0049 0.488 0.489 ®0.0050 0.484

(b) Re 0.1 0.2 0.5 1 2

C
LP

2.20 1.59 1.08 0.805 0.581
C

Lν 3.43 2.20 1.16 0.629 0.181
C

L
5.63 3.79 2.24 1.43 0.762

T 5. Lift coefficient C
L
, pressure contribution C

LP
, and viscous contribution C

Lν : (a) in the
range 0.1%Re% 500 for Sr¯ 0.02 and Sr¯ 0.2; (b) in the range 0.1%Re% 2 for Sr¯ 0.5

theoretical result because, as will be shown in §5.4, Saffman’s hypotheses are not
appropriate in the present case. Nevertheless, the important practical conclusion is that,
compared to the Stokes drag which is proportional to Re−", this drag increase is
generally negligible. To summarize, there is undoubtedly an effect of the shear on the
drag force but this effect is very weak for low to moderate values of the shear rate. This
allows us to conclude that the drag laws established in uniform flow can be used
without modification for most practical predictions of bubble motions in shear flows.
We will come back on that point in §7 when discussing the case of higher shear rates
at high Reynolds number.

5.3. The lift force at moderate to high Reynolds number

Figure 17 displays the values of the steady lift coefficient C
L

in the range 0.1!Re!
500 for the two shear rates Sr¯ 0.02 and Sr¯ 0.2. The corresponding values of C

L
and

the respective contributions of pressure (C
LP

) and normal viscous stress (C
Lν) to the lift

coefficient are reported in table 5(a). It is first interesting to notice that while C
Lν is

positive at low Reynolds number, it becomes negative when the Reynolds number is
larger than unity, meaning that viscous effects tend then to lower the net lift force. No
simple explanation of this change of sign emerges because C

Lν is entirely due to the
secondary velocity field produced by the asymmetry of the unperturbed flow. It is
interesting to notice that for a solid sphere (for which C

Lν results from shear stresses),
the sign of C

Lν is controversial. In their computations, Dandy & Dwyer (1990) found
that C

Lν was always positive and represented the major contribution to C
L

whatever
the Reynolds number. In contrast, Kurose & Komori (1997) found that C

Lν became
negative beyond a critical value of the Reynolds number slightly larger than 5.

For Reynolds numbers larger than 5 the lift coefficient C
L

is found to increase
continuously with Re and to tend quickly towards Auton’s (1984, 1987) solution
C

L¢ ¯ 0.5 which is a priori valid for an inviscid fluid in the limit SrU 0. The difference
between the numerical values and the inviscid solution is about 10% at Re¯ 100, 3%
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at Re¯ 300 and 2% at Re¯ 500. Moreover, the values reported in table 5(a) show
that the lift force is completely dominated by inertial effects as soon as Re" 50: while
C

Lν contributes roughly 30% of C
L

when Re¯ 5, it contributes only 6% when Re¯
50 and less than 1% when Re¯ 500. For that value of Re one finds C

LP
¯ 0.493 for

Sr¯ 0.02 so that the difference between the numerical value of the pressure
contribution and the inviscid result is 1.4%. Moreover, it must be kept in mind that
C

LP
also contains a small viscous contribution resulting from the existence of the

boundary layer associated with the shear-free condition (3b). There is no rigorous way
to split C

LP
into an inertial contribution and a viscous one. However, at low Reynolds

number it can be shown that C
Lν ¯ 2C

LP
(see equations (10) and (11) of Legendre &

Magnaudet 1997). Moreover, a similar result holds in uniform flow for the drag force
at both low and high Reynolds number (C

Dν ¯ 2C
DP

) and this result is also
approximately valid at intermediate Reynolds numbers (see Magnaudet et al. 1995).
On these grounds it seems reasonable to assume that the viscous contribution in C

LP

is nearly equal to C
Lν}2 whatever the Reynolds number. If one accepts this assumption,

one finds that at Re¯ 500 the inertial part of C
L

is equal to 0.496 for Sr¯ 0.02 and
to 0.492 for Sr¯ 0.2. These results are in almost perfect agreement with Auton’s
theory in the limit SrU 0. If the foregoing assumption is used to estimate the inertial
part of C

LP
for Re" 5, one finds that this contribution is nearly equal to 0.45 for

5%Re% 50 and that it increases continuously from 0.45 to 0.50 for 50!Re% 500.
These estimates suggest that the inertial part of C

L
evolves very slowly with the

Reynolds number for Re& 5. Present results demonstrate that the inviscid theory
applies in the present range of shear rates as soon as the Reynolds number exceeds
several hundred, despite the fact that the surface distributions of V

Uθ(θ) and �h θ(θ,φ)
examined in §4 show that viscous effects affect significantly the local quantities even for
Re¯ 500.

One of the most prominent features revealed by figure 17 is that in the range of Sr
considered here, C

L
is virtually independent of Sr for Re" 5. In contrast, a strong

influence of the shear rate is observed for Re! 5. This result indicates that for Re" 5
and Sr% 0.2 (at least), the magnitude of the lift force is directly proportional to the
vorticity of the undisturbed flow. The numerical results corresponding to this range of
parameters can be fitted by the empirical correlation

ChighRe
L

(Re)¯
1

2

1­16Re−"

1­29Re−"
. (15)

The curve corresponding to relation (15) is shown on figure 17. It fits the numerical
results with an accuracy better than 1%. At high Reynolds number (15) tends towards
0.5 Re−"–6.5 Re−", showing that the difference between C

L
and C

L¢ decreases as Re−".
This difference obviously comes from viscous effects and the negative sign of the
corresponding coefficient reflects the fact that C

Lν is negative. It is not very surprising
to find that the viscous contribution to the lift force behaves like Re−" for large values
of Re since this evolution corresponds to the well-known behaviour of the drag force,
i.e. C

DUReU¢
¯ 48 Re−" (Levich 1962, p. 445).

5.4 The lift force at low to moderate Reynolds number

Figure 18 shows in detail the evolution of the lift coefficient for moderate to low
Reynolds numbers (0.01!Re! 10). When the Reynolds number decreases, C

L

reaches a minimum roughly equal to 0.3 around Re¯ 5. Then for lower Reynolds
numbers the lift coefficient increases continuously and very strongly when Re
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F 18. Lift coefficient C
L

�s. Re in the range 0.01!Re! 1. E, Sr¯ 0.02; _, Sr¯ 0.2; *,
Sr¯ 0.5. III, (8b) for Sr¯ 0.02; - - - - -, (8b) for Sr¯ 0.2; ——, (8b) for Sr¯ 0.5; ——, (8b)
using the value J(¢) corresponding to Saffman’s assumption.

decreases. Moreover, in contrast to the behaviour observed for Re" 5, figures 17 and
18 reveal that C

L
is greatly dependent on the shear rate in this range of Reynolds

number. This dependence is quite complex as suggested by the analytical solution (8b) :
the lift coefficient corresponding to Sr¯ 0.02 is larger than the one corresponding to
Sr¯ 0.2 for 0.2%Re% 5 but it becomes smaller at lower values of Re. Not
surprisingly the viscous contribution C

Lν becomes important and even dominant when
the Reynolds number is smaller than unity. As shown by the Low-Reynolds-number
analytical solution, both C

LP
and C

Lν make positive contributions to the lift force at
such Reynolds numbers.

A good agreement between the numerical values of C
L

and the analytical solution
(8b) is observed for Sr¯ 0.2 when Re! 0.5. In contrast no agreement is obtained for
Sr¯ 0.02 over the whole range of Re covered by the present computations, except
perhaps at Re¯ 0.1 (but that result must be taken with caution, see §3). These results
deserve some comments concerning the validity of the solution (8b). The asymptotic
study of the low-Reynolds-number equations shows that in the present flow the
creeping flow solution becomes invalid at a distance R

S
¯O(2R(SrRe)−"/#) (Saffman’s

radius) owing to the small inertia effects induced by the shear, and at a distance R
O

¯
O(2RRe−") (Oseen’s radius) owing to the usual inertia effects resulting from the mean
flow. Saffman (1965) developed his solution under the assumption R

O
jR

S
.

McLaughlin (1991) extended his work by assuming that R
O

is larger than R
S

or at least
of the same order as R

S
. In both cases the shear is responsible for the first invalidity

of the creeping flow solution. However, when the shear is small enough or the Reynolds
number is large enough, this first invalidity is caused by the mean flow. In other words
it is Oseen’s solution, not Stokes’ solution, which is modified by the shear in that case.
The ratio ε¯R

O
}R

S
¯ (Sr}Re)"/# is thus a crucial parameter for all these asymptotic

solutions and especially for the solution (8b) based on McLaughlin’s assumption. For
example for Sr¯ 0.02 the function J(ε) which appears in (8b) becomes negative when
Re" 0.4 (εE 0.22), implying a negative lift force. This prediction is obviously
unphysical. It only stresses the fact that the asymptotic solution is invalid for such
values of the physical parameters. For Sr¯ 0.02 and Re¯ 0.1 one gets εE 0.45, a
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value which is probably already out of the range of validity of (8b). In contrast, for
similar Reynolds numbers ε reaches significantly higher values when Sr¯ 0.2: one gets
ε¯ 0.71 for Re¯ 0.4 while Re¯ 0.1 corresponds to ε¯ 1.41. A comparison of the
numerical results with the predictions of (8b) suggests that the lower bound of validity
of the asymptotic solution is εE 0.7. Obviously this comparison also shows that
Saffman’s hypothesis (which leads to the use of the value of J corresponding to εU¢
in (8b)) is never satisfied in the present context. The predictions given by Saffman’s
assumption correspond to the straight lines plotted in the range 0.01%Re% 0.1 in
figure 18. By extrapolating these lines one sees clearly that none of the numerical results
plotted in figure 18 agrees with that theory because the values of ε used in the
computations are always moderate. For example for Sr¯ 0.2 one finds that
McLaughlin’s assumption gives a valid prediction for Re% 0.4 while Saffman’s and
McLaughlin’s results begin to agree only for Re% 0.03. These results lead us to
conclude that the theoretical prediction (8b) is valid for ε& 0.7 and at least up to
Re¯ 0.4. However, the choice Sr¯ 0.2 is somewhat limiting because in the range
0.4%Re% 1 the values of ε fall below 0.7. To avoid this limitation, additional
computations were performed in the large 0.1%Re% 2 with a larger value of Sr,
namely Sr¯ 0.5 which leads to εE 0.7 for Re¯ 1. The corresponding results are also
reported in figure 18 and in table 5(b). It can be seen in figure 18 that the values of C

L

found for Re! 0.5 agree very well with the asymptotic result (8b) (the error being
within 1%) while the values found for larger values of Re are clearly larger than the
asymptotic prediction. This finding suggests that ReE 0.5 is the intrinsic limit of
validity of (8b), even for large shears. Therefore, combining the above indications
allows us to conclude that the asymptotic solution (8b) is valid for Re% 0.5 and
ε& 0.7, i.e. Sr& 0.5 Re.

Having discussed the limitations of the analytical solutions we must stress again the
difficulties related to the confinement effect observed in the computations. It was
clearly established in §3 that for Re¯ 0.1 the size of the computational domain
influences the numerical results corresponding to Sr¯ 0.02. This is also apparent in
figure 18 because if the numerical ‘curve’ is extrapolated towards lower values of Re,
the extrapolated values lie well below the theoretical curve, even when (8b) becomes
valid, i.e. for Re% 0.05. Concerning the results corresponding to Sr¯ 0.2, one may
also suspect that small confinement effects appear when Re¯ 0.1 because the
numerical result lies slightly below the theoretical curve for this Reynolds number. In
contrast no confinement effect is discernible for Sr¯ 0.5, even when Re¯ 0.1, because
in that case one has R

S
}RE 9 so that the lift force can be correctly evaluated with the

present grid. Keeping in mind that the computational domain extends up to 100 bubble
radii when Re¯ 0.2 and 0.1, it appears that the accurate computation of the lift force
at low Reynolds number has a very high computational cost because it requires very
large domains. Thus there is almost no doubt that the low-Reynolds-number results
found by Dandy & Dwyer (1990) for a solid sphere using a small domain extending
only up to 25 sphere radii were contaminated by this confinement effect and that their
agreement with Saffman’s prediction was fortuitous. If one wants to avoid very large
computational times, the range of parameters over which the numerical predictions can
be compared properly with the theory is quite narrow because the former are easily
obtained for ‘not too large’ values of Sr and ‘not too small ’ values of Re while the
latter is valid only for small enough values of Re and large enough values of Sr}Re.
Despite this limitation the agreement observed in the present study for Sr¯ 0.2 and
above all for Sr¯ 0.5 is sufficient for concluding that (8b) is indeed the correct
asymptotic expression of the lift force for small enough Re.
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Coming back to the numerical results, it might be interesting to fit them by a
correlation extending the range of validity of (8b). For that purpose the function J(ε)
tabulated numerically by McLaughlin (1991) must be replaced by some empirical
function J «(ε) so that one can write

C lowRe
L

(Re,Sr)¯
6

π#

(ReSr)−"/#J «(ε). (16)

The function J «(ε) is determined in such a way that it agrees with the present results
corresponding to Sr¯ 0.2 and 0.5 for Re! 1 and that it tends towards J(ε) for ε" 0.8
(for which the difference between (8b) and the computational results is less than 1%).
One gets

J «(ε)¯
J(¢)

(1­0.2ε−#)$/#
, (17)

where J(¢)¯ 2.255. One can notice that J «(ε) is always positive and that it tends to
zero when ReU¢. It is now possible to combine the expressions (15) and (16)–(17) in
order to obtain a purely empirical correlation valid whatever the Reynolds number. A
very simple and accurate expression is found to be

C
L
(Re,Sr)¯ ([C lowRe

L
(Re,Sr)]#­[ChighRe

L
(Re)]#)"/#. (18)

This correlation matches the analytical solutions in both limits ReU 0 and ReU¢. One
sees in figure 17 that the curves corresponding to (18) are in very good agreement with
the numerical results over the whole range of Re.

Finally it is worth noting that most of the results discussed in this subsection also
apply for a solid sphere since it was shown by Legendre & Magnaudet (1997) that at
low Reynolds number the physical difference between a bubble and a solid sphere
modifies the lift force only by a numerical factor 4}9. In particular the bounds of
validity of (8b) established above and the correlation (16)–(17) are certainly
approximately valid for a solid sphere provided the numerical factor 6 in (8b) and (16)
is replaced by 27}2.

5.5. The origin of the lift force and its e�olution with the Reynolds number

The numerical results discussed in the foregoing subsections give a quite complete view
of the various contributions to the lift force and they show in detail its evolution with
the Reynolds number. However they mask somewhat the origins of the lift force and
more precisely the differences existing between the mechanisms responsible for its low-
and high-Re behaviour. This origin is more apparent in the theoretical expressions
(7)–(8) and we should devote some lines to the similarities and the differences existing
between the two types of asymptotic behaviour. The expression established by Auton
(1984, 1987) (or more precisely the integral giving the lift force, see equation (5.3) of
Auton (1987)) shows that for the simple shear flow considered here, a lift force appears
in inviscid fluid because the advection and the stretching of the basic vorticity ®αe

z

contained in the unperturbed flow are non-symmetric around the bubble (with respect
to the plane y¯ 0), resulting in a non-symmetric distribution of the meridian velocity
at the bubble surface. In contrast, expression (8a) makes clear the fact that at low
Reynolds number the lift force is proportional to the drag F !. As shown by Saffman
(1965) the far-field flow sees the bubble (and more generally the body) as a point source
of momentum whose strength is F !. This momentum source induces velocities which
are non-symmetric with respect to y¯ 0 because they are advected non-symmetrically
by the unperturbed flow. These velocities and the associated pressure field then result
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in a correction to the primary force F ! which is not aligned with the direction of the
primary flow. Up to that point, vorticity has not been invoked in that mechanism.
However, it is well known that in low-Reynolds-number flows the drag force is directly
proportional to the strength of the vorticity present at the surface of the body. Then
it becomes clear that the low-Reynolds-number lift force results from the existence of
a non-zero vorticity at the surface of the body and from the asymmetric advection
produced by the shear. If one compares the two mechanisms it appears now that they
have in common two essential ingredients, namely vorticity and asymmetric advection
with respect to the plane y¯ 0. The central difference between them is the origin of the
vorticity. In the former (which may be called the Lighthill–Auton mechanism) vorticity
comes necessarily from the unperturbed flow because it cannot be generated at the
surface of the body. In contrast in Saffman’s mechanism the outer vorticity associated
with the shear plays no role : the shear is essential in the mechanism because it makes
the advective process non-symmetric but the vorticity is provided by the shear-free (or
the no-slip) condition at the surface of the body. According to the shape of the function
C

L
(Re) displayed by figure 17, Saffman’s mechanism clearly dominates for Reynolds

numbers less than unity. Then in an intermediate range of Re, say 1%Re% 20, the
vorticity generated at the bubble surface and that present in the outer flow are both
active. For larger values of Re the inviscid mechanism is clearly dominant and the
vorticity generated at the bubble surface no longer plays a significant role. This
discussion also makes clear the key difference between the evolution of the lift force on
a clean bubble and on a solid sphere. For a solid sphere the low-Reynolds-number
behaviour is identical to that corresponding to a bubble. In contrast, when Re
increases, the magnitude of the vorticity generated by the no-slip condition increases
like Re"/# while the vorticity generated by the shear-free condition on a spherical bubble
never exceeds 3U

o
}R in a uniform flow. Thus in the case of a solid sphere, the surface

vorticity becomes so intense when Re goes beyond some value that it probably
overwhelms the outer vorticity in the mechanism generating the lift force and the two
kinds of bodies behave completely differently.

Having discussed the evolution of C
L

with Re, it is interesting to study the evolution
of the ratio between the lift force and the drag force because this ratio gives an idea of
the relative influence of the various forces acting on the bubble. According to the
definition (6), the ratio F

L
}F

D
can be simply expressed as

F
L

F
D

¯
4

3
Sr

C
L

C
D

. (19)

The quantity Sr−"F
L
}F

D
is plotted as a function of Re in figure 19. As could be expected

this plot reveals two different types of behaviour. At small to moderate Reynolds
number the lift force is very small compared to the drag force and the ratio F

L
}F

D
is

roughly constant for a given shear rate. In contrast, for Re& 5 this ratio increases
continuously with Re and the lift force becomes comparable to and even larger than
the drag force at high Reynolds number. For example for Sr¯ 0.2, one finds F

L
E

0.013F
D

at Re¯ 0.1 and F
L
E 1.4F

D
at Re¯ 500. This evolution underlines the fact that

the lift force and more generally the forces related to inertia are tremendously
important for predicting the motion of bubbles. For Re& 5 figure 19 shows that F

L
}F

D

grows linearly with Re. This behaviour comes simply from the fact that, in that range
of Re, C

L
is nearly constant while C

D
decreases as Re−".
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6. The transient behaviour of the lift force

Up to now we have only considered the steady results of the computations.
However, it is also of interest to examine the evolution of the lift force during the
transient stages following the beginning of the computations. Let us recall that the
initial velocity field used throughout this work corresponds to the undisturbed velocity
U defined by (1). In other words the bubble is suddenly introduced in the flow at time
t¯ 0. Since the numerical algorithm satisfies incompressibility at each time step, the
computed flow is physically meaningful whenever t" 0. Just after the introduction of
the bubble the velocity field is composed of the undisturbed flow U plus an irrotational
correction V

p
ensuring the impermeability condition at the bubble surface, i.e.

(U­V
p
)[n¯ 0. The reason why the lift force (and also of course the drag force) does

not immediately reach its steady value is obviously related to the finite time required
by the vorticity to be advected, stretched and diffused around the bubble. To study the
effect of these processes on the lift force it is convenient to define two different time
scales, according to the value of the Reynolds number. The advective time scale t

a
¯

R}U
o

is obviously relevant at high Reynolds number. At low Reynolds number the
distance which must be considered is not the bubble radius but Saffman’s radius R

S
¯

2R(SrRe)−"/# at which Stokes’ solution is modified by inertia effects. Consequently for
such Reynolds numbers the relevant time scale seems to be tν ¯R#

S
}ν which is the time

required by the vorticity perturbation produced by the bubble to reach the distance R
S
.

Intuitively one expects the lift force to reach its steady value in a time which scales with
tν (resp. t

a
) at low (resp. high) Reynolds number. In the low-Re limit it does not seem

surprising that a relaxation effect may affect the lift force because one is familiar with
a similar process affecting the drag force, the so-called Basset–Boussinesq force for a
solid sphere. In contrast, in the inviscid limit the situation deserves some comments. If
in place of a sphere one considers a two-dimensional body (say a cylinder) in the flow
field (1), one finds that the lift force on this body immediately reaches its steady value.
This is due to the fact that the initial vorticity field is constant and that no vortex
stretching can occur in that case since the flow is strictly two-dimensional. Then it is
straightforward to show that the introduction of the cylinder leaves the initial vorticity
field unchanged so that the velocity field U­V

p
defined above is the steady solution
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of the problem (see Auton, Hunt & Prud’homme 1988). The foregoing remark stresses
the fact that in the flow field considered here, a relaxation effect can affect the lift force
in the high-Reynolds-number limit only if the body is three-dimensional (this is
obviously true only for a body satisfying a zero-shear-stress condition; otherwise
vortex shedding would occur and this would affect the lift force even for a two-
dimensional body).

To our knowledge no analytical study of the transient behaviour of the lift force on
a sphere has been reported so far, either in the low-Reynolds-number limit or in the
inviscid one. Most authors have considered strictly steady situations. In contrast
Auton et al. (1988) considered a sphere moving in an unsteady rotational flow.
However they assumed that the change ∆ω experienced by the local vorticity ω during
the time t

a
was much smaller than ω so that the steady solution developed by Auton

(1987) for the lift force produced by the shear was still applicable. The general unsteady
problem is obviously very difficult to study analytically, even in the asymptotic limit
Sri 1. Nevertheless one can get useful information by calculating the value of the lift
coefficient just after the introduction of the bubble, say C

L
(t¯ 0+). This calculation is

carried out in Appendix A and it is found that C
L
(t¯ 0+)¯ 3}4, whatever the value

of the shear rate. This result holds whatever the Reynolds number because it can be
easily shown that the normal viscous stresses produced by V

p
lead to C

Lν ¯ 0 and
because the initial vorticity field is uniform so that the viscous term in (2b) is initially
zero. However, in the high-Reynolds-number limit the above result is valid for ti t

a

while at low Reynolds number, vorticity diffuses in a typical time much smaller than
t
a

so that the result is only valid within a much shorter time interval. From this result
one can anticipate the evolution of the lift coefficient during the transient stage. At high
Reynolds number C

L
decreases from its initial value of 3}4 to its steady value of 1}2,

meaning that advection of vorticity around the bubble lowers the lift force. At low
Reynolds number, the vorticity perturbation produced by the bubble is confined at
short times in the neighbourhood of the bubble. During that stage this perturbation
only diffuses and one can expect this process to decrease C

L
. In a second stage this

perturbation begins to reach the region where inertia effects become comparable to
viscous diffusion and Saffman’s mechanism begins to act. Then C

L
may increase or

decrease in time, depending on the magnitude of the steady value given by (8a) (for the
moderate shear rates considered here this value is quite high so that one can expect an
increase of C

L
).

To confirm the foregoing analysis two time evolutions of C
L

are reported in figures
20(a) and 20(b). The first case corresponds to Re¯ 500 and Sr¯ 0.02 while the second
one is chosen in the low-Reynolds-number regime, namely Re¯ 0.5 and Sr¯ 0.5.
Figure 20(a) confirms the theoretical result C

L
(t¯ 0+)¯ 3}4 since one finds

numerically C
L
(t¯ 0+)E 0.73. It also shows that during the transient stage C

L

decreases continuously towards its steady value. This value is approximately reached
at t¯ 2t

a
which corresponds to the time required by the flow to advect vorticity over

one bubble diameter. In the low-Reynolds-number case, figure 20(b) shows clearly that
C

L
increases in time towards its steady value (a short period of decrease also exists at

the very beginning of the motion but it is masked by the time scale of the figure). In
agreement with the analysis developed above, one sees that C

L
reaches its steady value

after a time interval of the order of 2tν to 3tν.
In view of the discussion below it is worth noting that we have shown that in a

transient situation the value of the lift coefficient can be markedly different from the
value of the added mass coefficient, i.e. C

M
¯ 1}2. From a practical point of view, our

results may be used to compute correctly the motion of bubbles moving in flows having
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F 20. Transient behaviour of the lift coefficient at (a) high Reynolds number (Re¯ 500,
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sheared and unsheared regions. For example if a bubble has been moving in a region
where the flow is uniform and penetrates into a sheared region, the lateral motion of
the bubble is underpredicted if the steady value of the lift coefficient is used at all time.
The error is negligible for large values of Re because during a time 2t

a
the displacement

of the bubble is only 2R, i.e. one diameter. In contrast for low values of Re and Sr, the
error can be much larger because during a time 2tν the bubble moves over a distance
equal to 4Sr−"R. Moreover the results discussed in this section can be of importance
for determining accurately the motion of bubbles in strongly unsteady sheared flows,
like oscillatory flows with shear. However, this case has to be considered specifically
before any firm conclusion can be derived.

7. The effect of the shear rate on the lift and drag coefficients at high
Reynolds number

It was shown in §5 that at moderate to large Reynolds number the lift coefficient is
nearly independent of Sr for Sr% 0.2. To see whether this is also the case for larger
values of the shear rate, specific computations were carried out for Re¯ 300 and
Re¯ 500 at various shear rates ranging from Sr¯ 0.2 to Sr¯ 1. In order to reduce the
computational cost and to avoid very large negative values of the velocity (see §3), the
size of the computational domain was decreased to R¢}R¯ 20 in these computations
(another possibility that we did not explore would have been to consider a shear flow
with a uniform shear close to the bubble and a decreasing shear far from it). The
resulting evolution of the lift coefficient is plotted in figure 21(a), the corresponding
numerical values being given in table 6. The key feature displayed by figure 21(a) is the
small but consistent decrease of C

L
observed for Sr& 0.2. For example one finds

C
L
¯ 0.449 for Re¯ 300 and Sr¯ 1 while for the same Reynolds number one gets

C
L
¯ 0.483 for Sr¯ 0.02. The difference cannot be attributed to viscous effects because

the numerical values of C
Lν reported in table 6 show that for a given value of Re the

viscous contribution to the lift coefficient remains nearly independent of Sr ; the
variations of C

Lν are typically two orders of magnitude smaller than those of C
L
. Con-

sequently one can conclude that when Sr increases there is a decrease of C
L

which is
due to inertia effects, and more precisely to the nonlinearities of the vorticity equation.

The numerical results obtained for Sr¯O(1) could be used to correct the correlation
(15) given in §5 by replacing the coefficient 1}2 by some function of Sr. However, the
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Re Sr 0.01 0.02 0.1 0.2 0.5 0.75 1

300 C
LP

0.491 0.490 0.489 0.0487 0.0478 0.465 0.456
C

LV
®0.0077 ®0.0077 ®0.0077 ®0.0076 ®0.0075 ®0.0077 ®0.0078

C
L

0.483 0.482 0.481 0.480 0.471 0.457 0.449
500 C

LP
— 0.493 — 0.489 — — 0.457

C
Lν — ®0.0049 — ®0.0050 — — ®0.0051

C
L

— 0.488 — 0.484 — — 0.452

T 6. Lift coefficients C
L
, pressure contributions C

LP
, and viscous contribution C

Lν

for Re¯ 300 and Re¯ 500 in the range 0.02%Sr% 1

most important practical consequence of the increase of the shear rate is found on the
drag coefficient. The values of C

D
obtained with the present shear rates are plotted in

figure 21(b). One observes that the increase of C
D

with Sr which is negligible for
Sr% 0.2 becomes very significant when Sr is of order unity. For example the drag
coefficient corresponding to Re¯ 300 increases by more than 54% from the value
C

D
¯ 0.140 for Sri 1 until C

D
E 0.216 for Sr¯ 1. Thus for such high values of the

shear rate the predictions given by Moore’s theory (Moore 1963) do not apply. An
empirical fitting of the present results can be easily obtained by noting that since the
drag force cannot depend on the sign of the shear, the difference C

D
(Re,Sr)®C

DU
(Re)

(C
DU

being the value of C
D

in uniform flow) is necessarily proportional to an even
power of Sr. Using the data shown in figure 21(b) one obtains

C
D
(Re,Sr)¯C

DU
(Re) [1­0.55Sr#]. (20)

Interestingly, the increase of the drag coefficient comes essentially from the contribution
of the pressure. The values of the two contributions C

Dν and C
DP

are given in table 7.
It can be seen that C

Dν is only weakly dependent on Sr while C
DP

increases sharply
at high shear rate. This difference between the behaviour of viscous and pressure
contributions is similar to that observed for the lift force. It suggests that it is essentially
the modification of the pressure distribution induced by the inertia effects associated
to the shear which is responsible for the drag increase. To get a better understanding
of this phenomenon, the pressure distribution at the surface of the bubble is shown in
figure 22 for Sr¯ 1 and Re¯ 300. Compared to the case Sr¯ 0.2, it appears that this
distribution is strongly modified in the symmetry plane of the flow (z¯ 0). Roughly,
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Re Sr 0 0.01 0.02 0.1 0.2 0.5 0.75 1

300 C
DP

0.0544 0.0546 0.0546 0.0553 0.0579 0.0716 0.0899 0.118
C

Dν 0.0869 0.0870 0.0870 0.0871 0.0874 0.0892 0.0935 0.0976
C

D
0.141 0.142 0.142 0.142 0.145 0.161 0.184 0.216

500 C
DP

0.0332 — 0.342 — 0.0368 — — 0.0749
C

Dν 0.0548 — 0.0547 — 0.0550 — — 0.0600
C

D
0.0880 — 0.0889 — 0.0918 — — 0.135

T 7. Drag coefficient C
D
, pressure contribution C

DP
, and viscous contribution C

Dν

for Re¯ 300 and Re¯ 500 in the range 0.02%Sr% 1

three regions can be distinguished. In the front part (say θ! "

$
π) the pressure found for

negative values of y (φ¯π) is decreased (compared to the case Sr¯ 0.2) while it is very
significantly increased at the upper part of the bubble (φ¯ 0). The maximum pressure,
which corresponds to the stagnation point, is located at θ

o
Eπ}12. Overall this region

provides a much larger positive contribution to the drag than in usual situations,
especially because the elementary area around the position of the maximum is
obviously much larger in the present case than when this maximum is located close to
θ¯ 0. In the central region (say "

$
π! θ! $

%
π) one observes a very strong asymmetry

between the distributions corresponding to the upper and lower parts of the bubble.
This reflects the fact that the meridian velocity Vθ is much larger above the bubble than
below it (precisely, in the present case the maximum of this velocity component is
found to be 1.85 for φ¯ 0, 1.13 for φ¯π, while it is about 1.40 in the plane φ¯ "

#
π).

The contribution of this region to the drag is clearly negative and comes essentially
from the lower part of the bubble where a significant asymmetry of the distribution
with respect to the equatorial plane θ¯ "

#
π is observed. Finally, at the rear of the bubble

(θ" $

%
π), the asymmetry between the distributions found for φ¯ 0 and φ¯π is small,

indicating that this region is much more governed by viscous effects than by the
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influence of the shear. Summarizing, one concludes that, compared to the case of small
shears, the front region strongly increases the drag while the central region tends to
decrease it. Since the largest contribution is the increase coming from the vicinity of the
stagnation point, the overall effect leads to an increase of the total pressure drag.

8. The relation between the lift coefficient and the added mass coefficient

In the introduction it was pointed out that several studies have concluded that in
inviscid flow the lift coefficient C

L
of a sphere is equal to its added mass coefficient C

M
.

It is the purpose of this section to discuss this problem in more detail and to examine
the degree of generality of this equality using some results of the simulations.

In the work of Auton (1987) and Naciri (1992) (who generalized the foregoing result
to ellipsoids) the lift coefficient was first obtained by solving the rotational flow around
the body and the identity between C

L
and C

M
appeared fortuitously. To establish it on

deeper grounds both authors re-derived the value of C
L

by applying a momentum
balance to a large cylinder of fluid surrounding the body. In that derivation the result
that emerged was C

L
¯C

VM
, C

VM
being the drift volume coefficient defined by Darwin

1953). This result was obtained under the same assumptions as the direct calculation
of C

L
, namely a steady flow with Sri 1. The drift volume represents the volume

limited by the initial and final positions of fluid particles lying initially in a plane
normal to the displacement of the sphere and entrained by its motion. Darwin showed
that when this volume is properly defined, the identity C

M
¯C

VM
holds for a steady

irrotational unbounded flow. Later the conditions of validity of this identity were
carefully examined by several authors (see especially Eames, Belcher & Hunt 1994).
Summarizing, the identity C

L
¯C

VM
was proved by Auton (1987) and Naciri (1992)

for a steady flow under the assumption Sri 1 and it implies C
L
¯C

M
if Darwin’s

result applies. This identity was recovered under the same physical assumptions by
Wells (1993) (see also Wells 1996) who performed an elegant geometrical determination
of the vorticity distribution around the sphere and evaluated the force as the rate of
change of the fluid impulse.

As mentioned in the introduction, another series of works tried to make a direct link
between C

L
and C

M
by invoking various forms of the frame indifference principle. The

use of this principle has led to many conceptual or technical errors and to erroneous
interpretations, some of them carefully discussed in the context of forces acting on
particles by Ryskin & Rallison (1980) or by Auton (1984). These authors showed that
generally, the only acceptable form of this ‘principle ’ is the observer frame indifference
(OFI) principle (Auton 1984) which states that the overall force must transform in an
objective way between two different frames of reference because its magnitude cannot
depend on the state of the observer. Ryskin & Rallison (1980) and Auton (1984)
demonstrated that the stronger form of the frame indifference principle which states
that the force can only depend on objective quantities, i.e. that its functional expression
is unaffected by a solid body motion (a principle called rigid body frame indifference
(RBFI) by Auton), is incorrect as soon as one considers problems in which inertia
effects are strong enough to affect the microstructure of the flow. This means that the
general functional form of the total hydrodynamic force acting on a sphere derived by
Drew & Lahey (1979) through an extensive use of the RBFI ‘principle ’ is not correct.
In Appendix B we apply the OFI principle and we establish how the original expression
found by Auton et al. (1988) for the hydrodynamic force on a sphere moving in an
inviscid, weakly rotational flow transforms in a rotating frame of reference. We then
show that no information on the lift and added mass coefficients can be found from this
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expression, i.e. that the result holds whatever the values of C
L

and C
M

. Thus one has
to conclude that no mathematical constraint like C

L
¯C

M
can be deduced from the

application of the frame indifference principle.
The foregoing discussion shows that the only equality between C

L
and C

M
which has

a sound physical meaning is the one derived by Auton (1987), Naciri (1992) and Wells
(1993). Our purpose in the remainder of this section is to discuss its range of validity.
Since we consider only a steady linear shear flow with a bubble at rest, no added mass
force exists in the present case and C

M
cannot be determined. However, it is now widely

agreed that the added mass coefficient does not depend either on the strength of the
acceleration or on the Reynolds number. The result C

M
¯ "

#
has been obtained through

the solution of the full Navier–Stokes equations by various authors who considered
very different physical situations, i.e. flow with a constant acceleration (Rivero et al.
1991; Chang & Maxey 1995), oscillatory flow (Rivero et al. 1991; Chang & Maxey
1994), flow with small-amplitude oscillations (Mei, Lawrence & Adrian 1991), steady
axisymmetric straining flow (Magnaudet et al. 1995), steady flow around a bubble with
a time-dependent radius (Legendre, Boree & Magnaudet 1998). In these studies the
strength of the acceleration and the Reynolds number covered a very wide range.
Moreover most of these studies considered the case of a solid sphere and a recirculating
region was present in many cases. The added mass coefficient was always found to be
"

#
so that there is no doubt that this value is a true constant which depends only on the

shape of the body on which the relative normal velocity of the fluid has to vanish. To
specify the validity of the equality C

L
¯C

M
it is therefore sufficient to study the

variation of the lift coefficient in the high-Reynolds-number limit considered in the
present computations.

In §6 we obtained some interesting information about the validity of this equality :
since both the analytical result derived in Appendix A and the numerical results
demonstrate that the initial value of C

L
is $

%
, it is clear that C

L
and C

M
differ in strongly

unsteady situations, even in the limit Sri 1. In §7 we studied the evolution of C
L

with
Sr in a steady flow and we showed that there is a slight but significant decrease of C

L

when Sr is of order unity and that this decrease cannot be attributed to viscous effects.
Since no such evolution of C

M
with the strength of the acceleration is observed in the

works mentioned above, one reaches the conclusion that C
L

and C
M

are not equal for
Sr¯O(1). Combining the results found for the transient evolution of C

L
with those

found for O(1) shear rates, one sees that the equality C
L
¯C

M
holds only in the limit

of small shear rates (typically Sr% 0.2 according to present results) and of nearly
steady evolutions. These conditions correspond to those of the derivations of Auton
(1987), Naciri (1992) and Wells (1993).

9. Summary and conclusions

This paper has been devoted to a quite extensive numerical study of the lift force
acting on a clean spherical bubble embedded in a viscous linear shear flow. A wide
range of Reynolds number has been explored in order to describe situations dominated
by viscous effects as well as nearly inviscid flows. In both asymptotic regimes,
systematic comparisons with available analytical solutions have been carried out. Most
of the computations reported in this work concerned low to moderate shear rates and
steady situations. Nevertheless several simulations dealing with the transient stage of
the flow or with higher shear rates have also been carried out. Among the results
discussed above the following appear to be especially significant:

(i) The flow field at the surface of the bubble is strongly dependent on the Reynolds
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number. At low Re the azimuthal velocity is very small and is directed towards the top
of the bubble. When Re increases, the azimuthal velocity first becomes positive close
to the front stagnation point. At high Re this velocity is positive over most of the
bubble and its strength is one order of magnitude larger than at low Reynolds number.
Both the azimuthal and the meridian velocity follow simple azimuthal dependence,
except around Re¯ 1.

(ii) At high Reynolds number, the tilting and stretching of the unperturbed spanwise
vorticity by the spanwise velocity gradients produced by the presence of the bubble
results in a concentration of streamwise vorticity very close to the downstream part of
the x-axis. This streamwise vorticity can reach maximum levels much larger than the
imposed shear.

(iii) The dominant physical mechanisms governing the lift force are very different at
low and high Reynolds number. At high Re, the mechanism is essentially associated
with the fact that the vorticity present in the undisturbed flow is distorted
asymmetrically by the strain induced by the presence of the bubble. On the other hand,
at low Reynolds number the dominant process is associated with the fact that the
vorticity generated at the bubble surface diffuses in the flow and is asymmetrically
transported by the far-field velocity. Consequently the lift force evolves very differently
at low and high Reynolds number. At low Reynolds number the lift coefficient is a
decreasing function of Re and it depends strongly on the shear rate. This dependence
is quite complex and an empirical correlation has been proposed to describe the
evolution of C

L
. The lift coefficient reaches a minimum approximately equal to 0.3

around ReE 5. Beyond this value C
L

increases continuously and tends asymptotically
towards the value C

L
¯ 0.5. In that range of Reynolds number C

L
is nearly

independent of Sr for low to moderate values of the shear rate.
(iv) The validity of the asymptotic solutions available in the limit of low and high

Reynolds number has been specified. At small Reynolds number and moderate to high
shear rates, the solution derived by Legendre & Magnaudet (1997) is valid for Re%
0.5 and Sr}Re& 0.5. At high Reynolds number and low to moderate shear rate (i.e.
Sr% 0.2) the numerical results are extremely close to Auton’s solution C

L
¯ "

#
for

Re& 300.
(v) The drag force is almost unaffected by the shear rate for Sr% 0.2. In contrast,

the simulations carried out at higher shear rate and high Reynolds number demonstrate
that the drag is strongly increased when Sr becomes of order unity. More precisely, at
high Reynolds number the drag coefficient involves a corrective contribution whose
leading term is proportional to Sr#Re−". This increase of the drag force is mainly due
to the modifications of the pressure distribution produced by the shear in the front part
of the bubble.

(vi) In strongly unsteady situations, like the transient stage which follows the
introduction of the bubble in the flow, the lift-coefficient is higher than "

#
. It has been

showed analytically that the initial value of C
L

in an inviscid fluid is $

%
. Similarly, when

the Reynolds number is high and the shear rate becomes of order unity, the steady
value of C

L
decreases slightly but consistently below the value found in the limit of

small shear rates.
(vii) The well-known identity C

L
¯C

M
derived by several authors using different

starting points has been discussed in some detail. It has been shown that theoretical
requirements like frame indifference do not impose any relation between the lift
coefficient and the added mass coefficient. Using some of the present computational
results it appears that this identity holds only for nearly steady flow when the shear rate
is low.
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Appendix A

In this Appendix we derive analytically the expression for the lift force experienced
by a sphere just after its introduction in an inviscid linear shear flow. The notation is
that employed in the remainder of the paper except that in place of the angle θ we use
the usual meridian angle Θ¯π®θ.

Right at the time where the sphere is introduced in the flow, the velocity field V is
the sum of the undisturbed field defined by (1) and of an irrotational contribution
ensuring that the normal velocity at the surface of the sphere is zero. One can
decompose this velocity field into an axisymmetric contribution V

U
produced by the

uniform velocity U
o
and a perturbation V

!
resulting from the existence of the shear α.

The axisymmetric velocity field derives from the well-known potential Φ
U

¯
U

o
(r­R$}2r#) cosΘ, so that one has

V
U

¯U
o
[(1®R$}r$) cosΘe

r
®(1­R$}2r$) sinΘeΘ]. (A 1)

The perturbation velocity V
!
satisfying V

!
[n¯ 0 on the sphere surface (n denoting the

local unit normal) may be written in the form V
!
¯αye

x
­¡Φ

!
. One easily finds the

potential Φ
!

(see equation (3.1) of Auton 1987), namely

Φ
!
¯

α

6

R&

r$
sin 2Θ cosφ. (A 2)

At very short time, i.e. ti t
a
¯R}U

o
, the vorticity equation is then

¥ω
¥t

­(V
U
­V

!
)[¡ω

!
¯ω

!
[¡(V

U
­V

!
). (A 3)

Since the initial vorticity ω
!
¯¡¬V

!
¯®αe

z
is uniform, the advective term is zero.

Moreover, in the limit Sri 1, V
!

is much smaller than V
U

and can be neglected in
(A3). Thus the solution of (A3) is simply

ω(t)¯ω
!
­tω

!
[¡V

U
­O(αSr t}t

a
,α(t}t

a
)#). (A 4)

The second term on the right-hand side of (A4) produces an additional velocity field
V
"

which grows linearly in time and satisfies the conditions

¡[V
"
¯ 0,

¡¬V
"
¯ tω

!
[¡V

U
,

V
"
[n¯ 0 for r¯R,

V
"
U 0 as rU¢.

5

6

7

8

(A 5)

The complete velocity field around the sphere is thus at very short time V¯V
U
­V

!
­V

"
.

Taking into account the fact that V
"

is initially zero, for ti t
a

the Euler equation is

¥V
"

¥t
­ω

!
¬(V

U
­V

!
)­"

#
¡(V

U
­V

!
)#¯®

1

ρ
¡(P

U
­0 ), (A 6)

where P
U

is the pressure field associated with V
U
. Since this pressure field does not
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produce any force, the lift force is entirely determined by the distribution of 0 on the
sphere. Using these approximations, the governing equation of the leading contribution
to 0, say 0

"
, is

¥V
"

¥t
­ω

!
¬V

U
­¡(V

U
[V

!
)¯®

1

ρ
¡0

"
. (A 7)

Since V
U

and V
!
are known from (A1) and (A2) it is clear from (A7) that the key step

for calculating the initial value of the lift force is the solution of the problem (A5).
Using (A1) one first obtains the expression for the vortex stretching term in spherical
coordinates, namely

ω
!
[¡V

U
¯®$

#
αU

o

R$

r%
[sinφ($

#
sin 2Θe

r
®cos 2Θ) eΘ®cosΘ cosφeφ]. (A 8)

The rotational part of V
"
, say V

"R
, is governed by the first and the second equations of

(A5). Expressing ¡¬V
"R

in spherical coordinates and using (A8) one finds after some
calculations that V

"R
is given by

V
"R

¯®$

#
αU

o
t
R$

r$
[sinΘ cosφe

r
­sin#Θ sinφeφ]. (A 9)

Equation (A9) shows that V
"R

induces a non-zero radial velocity ®$

#
αU

o
t sinΘ cosφ

at the surface of the sphere. Thus this solution must be completed by an irrotational
velocity field V

"P
so that V

"
¯V

"R
­V

"P
satisfies the third condition in (A5). One finds

easily that the potential Φ
"

which gives V
"P

¯¡Φ
"

is

Φ
"
¯®$

%
αU

o
t
R$

r#
sinΘ cosφ. (A 10)

Using (A9) and (A10) one finally gets the expression for the perturbation velocity V
"

induced by the vortex stretching mechanism, namely

V
"
¯®$

%
αU

o
t
R$

r$
[cosΘ cosφeΘ®cos 2Θ sinφeφ]. (A 11)

One can now integrate the momentum equation (A7) in order to obtain the pressure
0
"
. Using (A1), (A2) and (A11) one obtains on the sphere

0
"
(r¯R,Θ,φ)¯0

!
­&

%
ραU

o
R sinΘ cos 2Θ cosφ, (A 12)

where 0
!

is a constant. Finally the lift force at very short time, say F
L
(t¯ 0+), is

obtained by evaluating the integral

F
L
(t¯ 0+)¯®&0

"
(r¯R,Θ,φ)n[e

y
dS¯®R#&0

"
(r¯R,Θ,φ) sin#Θ cosφ dΘdφ.

(A 13)
One gets

F
L
(t¯ 0+)¯πρR$αU

o
(A 14)

which yields, using the definition (6)

C
L
(t¯ 0+)¯ $

%
. (A 15)

This result shows that the initial lift coefficient is larger by one half than its steady
value. This finding suggests that the advection of vorticity which does not contribute
to the solution (A15) decreases the value of C

L
because it tends to make the disturbed

flow more symmetric.
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The above result has been derived under the assumption that the shear is weak.
However, it is straightforward to show that (A15) holds whatever the value of Sr. For
that purpose let us come back to (A3). If the vortex stretching term ω

!
[¡V

!
is no longer

neglected, the vorticity equation produces an additional velocity field V
#
satisfying at

short time the conditions
¡[V

#
¯ 0,

¡¬V
#
¯ tω

!
[¡V

!
,

V
#
[n¯ 0 for r¯R,

V
#
U 0 as rU¢.

5

6

7

8

(A 16)

The complete velocity field around the sphere is now V¯V
U
­V

!
­V

"
­V

#
and the

additional pressure field 0
#
associated with the nonlinear effects of the shear is governed

at very short time by

¥V
#

¥t
­ω

!
¬V

!
­"

#
¡V #

!
¯®

1

ρ
¡0

#
. (A 17)

Equation (A17) is identical to the momentum balance corresponding to a velocity
V
F

¯αye
x
far from the sphere, i.e. to a pure shear flow with a zero velocity at the centre

of the sphere. In such a situation, no lift force can exist for obvious symmetry reasons.
Hence one concludes immediately that 0

#
does not contribute to the lift force, so that

(A15) holds whatever the value of Sr.
Finally, it is interesting to extend the foregoing analysis to another simple case of

rotational flow, namely the purely rotating flow defined by

V¯ (U
o
­"

#
αy) e

x
®"

#
αxe

y
. (A 18)

This flow has the same initial vorticity ω
!
¯®αe

z
as the pure shear flow considered

before. Since the axisymmetric velocity field V
U

is also similar in both flows, it results
from (A4) and (A5) that the velocity contribution V

"
is still given by (A11) in this

second flow. Thus for the present problem the only difference between the two flows
lies in the velocity perturbation V

!
. Since the unperturbed rotating flow does not induce

any normal velocity at the surface of the sphere, the corresponding value of V
!
, say V !

!
,

is simply given by
V !

!
¯ "

#
α(ye

x
®xe

y
). (A 19)

By replacing V
!
by V !

!
in (A7) one finds immediately that the various terms of the left-

hand side cancel, so that the pressure perturbation 0 at the surface of the sphere obeys

¡0 «(r¯R,Θ,φ)¯ 0 (A20)
which yields

C
LR

(t¯ 0+)¯ 0, (A21)

where C
LR

(t¯ 0+) is the initial value of the lift coefficient in the present flow.
Combining this result with (A15) shows that the usual relation C

LR
¯C

L
®"

#
(1­C

M
)

linking the so-called rotational lift coefficient C
LR

to the shear lift coefficient C
L

and to
the added mass coefficient C

M
(see Auton et al. 1988) is still valid, at least at very short

time, for a strongly unsteady, three-dimensional inviscid flow. The case of a sphere
moving arbitrarily in a time-dependent straining flow in solid body rotation was
considered by Drew & Lahey (1987, 1990) who used a frame of reference rotating with
the flow. In their original derivation these authors assumed erroneously that the flow
seen in the rotating frame was irrotational at all time, i.e. that the contribution
equivalent to V

"
was zero. In their corrigendum (Drew & Lahey 1990), they recognized
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the existence of V
"

but avoided its calculation by using a method giving directly the
force in terms of the normal pressure gradient n[¡0 « at the surface of the sphere. It
is straightforward to see in (A7) that at short time n[¡0 « does not involve V

"
, owing

to the condition V
"
[n¯ 0 on the sphere. Consequently the original result of Drew &

Lahey (1987) is correct at short time. This means that the result they obtained (in the
particular case where the flow in the inertial frame is steady and has a zero strain rate
and where the sphere is at rest at the origin of the coordinate system) must be
equivalent to the result (A21). To prove that this is indeed the case, it is convenient to
use (B 1) of Appendix B. If the flow defined by (A18) is studied in a frame of reference
rotating with the angular velocity Ω¯®αe

z
, the observer sees a uniform time-

dependent flow. Thus, recognizing that in the rotating frame the generalized buoyancy
force F$

o
equals ρ6[dU*}dt­2Ω¬U*] (if gravity is neglected), (B 1) reduces to

F*¯ ρ69dU*

dt
­2Ω¬U*­C

M

dU*

dt
­2(C

L
®C

M
)U*¬Ω: . (A22)

By inserting C
L
¯ 3}4 and C

M
¯ 1}2 in (A22), it is immediately obvious that the result

(A22) is equivalent to equation (45) of Drew & Lahey (1987) (after correcting the sign
of the Coriolis force in the latter equation). Moreover, noting that dU*}dt¯®Ω¬U*,
one finds that (A22) yields F*¯ 0, i.e. that it is equivalent to the result (A21) as it must
be. Surprisingly, Drew & Lahey (1987, 1990) claimed that their result was equivalent
to Auton’s result C

L
¯ "

#
, or in other words that their derivation supported the identity

C
L
¯C

M
. This erroneous conclusion was due to several errors made in the

transformation of velocities and accelerations between the rotating frame and the fixed
one. Equations (A21) and (A22) clarify the situation in showing that the result found
by Drew & Lahey (1987, 1990) is equivalent to our result C

L
(t¯ 0+)¯ $

%
but not to the

result C
L
¯ "

#
obtained by Auton in a steady flow.

Appendix B

In this Appendix we indicate how the hydrodynamic force acting on a sphere moving
in an inviscid, weakly rotational flow can be expressed in a rotating frame of reference
and we show that this expression does not give any indication about the value of the
lift coefficient or its relation to the added mass coefficient. We start from the particular
case where the flow in the inertial frame is irrotational, because this situation was
already considered by Zhang & Prosperetti (1994). In that case, if one considers
separately the generalized buoyancy force F

o
applied on the volume 6 of the sphere by

the unperturbed flow, i.e. F
o
¯ ρ6(DU}Dt®g) (g denoting the acceleration due to

gravity), the only force acting on the sphere in the inertial frame is the added mass force
which is proportional to A¯C

M
(DU}Dt®dU

d
}dt), where DU}Dt denotes the local

acceleration of the fluid while dU
d
}dt is the time-derivative of the sphere velocity U

d

following its own motion (see Auton et al. 1988). Zhang & Prosperetti pointed out
correctly that this expression for A cannot be used in a frame rotating with the angular
velocity Ω because the flow is no longer irrotational in that case. To overcome this
limitation they added a complementary term X to A and they determined X in such a
way that the total force satisfies the OFI principle, i.e. that it transforms objectively
from one frame of reference to another. Since A can be expressed in terms of the
quantities evaluated in the rotating frame (denoted with a star) in the form A¯
C

M
[D*U*}Dt®d*U$

d
}dt®2(U*®U$

d
)¬Ω], Zhang & Prosperetti (see Appendix B3

of their paper) showed that the correct expression for X is X¯®2C
M

(U*®U$
d
)¬Ω

which accounts for the effect of Coriolis acceleration. Since in the rotating frame the
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fluid has a uniform vorticity ω*¯®2Ω, X has the form of the lift force found by
Auton (1987) provided one defines a ‘ lift ’ coefficient C$

L
¯C

M
. On these grounds

Zhang & Prosperetti (1994) identified both forces. However, it must be stressed that the
above result was obtained in the very particular case where the absolute vorticity
ω

a
¯ω*­2Ω is zero. Let us now extend the foregoing derivation to the more general

case where the vorticity ω¯ω
a

is small but non-zero in the initial frame. For that
purpose the above form of A must be replaced by B¯A­C

L
(U®U

d
)¬ω which is the

expression for the force found by Auton et al. (1988). To make this expression valid
in a rotating frame and to satisfy the OFI principle, it is straightforward to show by
using the usual transformation rules (see Appendix B3 of Zhang & Prosperetti 1994)
that the corrective term X must be replaced by Y¯ 2(C

L
®C

M
) (U*®U$

d
)¬Ω. Thus

in the rotating frame the objective expression for the total force F* experienced by the
sphere under the assumptions considered by Auton et al. is

F*®F$

!

ρ6
¯C

M9D*U*

Dt
®

d*U$
d

dt :­C
L
(U*®U $

d
)¬ω*­2(C

L
®C

M
) (U*®U$

d
)¬Ω.

(B 1)

It can easily be checked by considering various basic flows that the magnitude of F*
predicted by (B 1) is independent of the frame of reference of the observer as it must
be. As already pointed out, in the particular case considered by Zhang & Prosperetti
the absolute vorticity is identically zero. Consequently one sees immediately in (B 1)
that the terms involving C

L
cancel exactly, whatever the value of C

L
. The means that

the term X derived by Zhang & Prosperetti must not be confused with the lift force
derived by Auton (1987) : the two terms are completely distinct and in that case the
‘ identity ’ C$

L
¯C

M
is just a definition which has nothing to do with Auton’s result. If

instead of a sphere one considers the two-dimensional flow around a circular cylinder
for which it is well known that C

M
¯ 1 and C

L
¯ 2 (see Batchelor 1967, p. 543), there

is no more possible confusion between C
L

and C$
L
. In other words, the OFI principle

does not tell us anything about the lift coefficient C
L
. It just shows that if C

L
¯C

M
,

(B 1) has a form identical to the expression established by Auton et al. (1988) in a fixed
frame of reference.
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